
Improving SSD Performance Using Adaptive
Restricted-Copyback Operations

Duwon Hong1, Myungsuk Kim1, Jisung Park1, Myoungsoo Jung2, and Jihong Kim1

1Department of Computer Science and Engineering, Seoul National University
2Department of Electrical Engineering, KAIST

Email: 1{duwon.hong, morssola75, jspark, jihong}@davinci.snu.ac.kr, 2m.jung@kaist.ac.kr

Abstract—Copyback operation can improve the performance
of data migrations in SSD, but they are rarely used because
of their error propagation problem. In this paper, we pro-
pose an integrated approach that maximizes the efficiency of
copyback operations but does not compromise data reliability.
First, we propose a novel per-block error propagation model
under consecutive copyback operations. Our model significantly
increases the number of successive copybacks by exploiting
the aging characteristics of NAND blocks. Second, we devise
a resource-efficient error management scheme that can handle
successive copybacks where pages move around multiple blocks
with different reliability. Experimental results show that the
proposed technique can improve the IO throughput by up to
25% over the existing technique.

Index Terms—Copyback, NAND flash, FTL, Storage system

I. INTRODUCTION

Flash-based SSDs move a large amount of data internally
to support various SSD management tasks such as garbage
collection (GC), wear leveling and read-distrub management.
Since these internal data copy operations directly interfere with
I/O requests from user applications, how to efficiently handle
internal data migrations is a key challenge for designing a
high-performance SSD. Although there have been extensive
investigations (e.g., [1]–[4]) to mitigate the impact of internal
data migrations, most existing techniques do not adequately
handle a new performance bottleneck of copy operations in
modern SSDs. Unlike old SSDs where the copy cost was
dominated by the program time tPROG, in recent high-end
SSDs, the data transfer time tDMA between flash cells and off-
chip DRAM takes a large portion of the copy cost. This shift
in the performance bottleneck is due to two recent flash/SSD
technology changes: 1) innovations in the flash cell design
(which reduced tPROG) [5] and 2) a high degree of the internal
parallelism in high-end SSDs (which increases the effective
data transfer time tDMA).

In order to minimize tDMA, copyback operations [6] are
considered as one of the most effective solutions because
the copyback operation can move pages without off-chip
data transfers, thus eliminating tDMA completely. However,
copyback operations are rarely used in modern SSDs because
they cause a fatal reliability problem. When pages are migrated
using copyback operations, they bypass an off-chip error-
correction code (ECC) module and bit errors occurred during
copybacks are accumulated. If the number of the accumulated
bit errors exceeds the correction capacity of the ECC module,

the stored data in the copybacked page becomes unreadable.
Furthermore, since tPROG was responsible for a large portion
of the data migration time in old SSDs, the performance
improvement from copyback operations was marginal. How-
ever, as tDMA becomes a key performance bottleneck of data
migrations in modern SSDs, research on revitalizing copyback
is receiving new attention. For example, FastGC [7] shows
that copyback operations can be useful in reducing the GC
overhead by limiting the number of consecutive copyback
operations so that the accumulated bit errors do not exceed
the error correction capability of a common ECC scheme.

In this paper, we propose an integrated approach that
maximizes the efficiency of copyback operations but does not
sacrifice data reliability. Although our approach is based on
the same motivation as FastGC [7], we improve the existing
technique in two major aspects. First, we propose a novel per-
block error propagation model under consecutive copyback
operations. Our model aggressively exploits the aging char-
acteristics of NAND flash memory in deciding the copyback
threshold of a NAND block. (We call the maximum number of
consecutive copyback operations allowed for a NAND block
as the copyback threshold of the NAND block.) From our
characterization study with 3D TLC NAND chips [8], we
observed that the copyback threshold of a NAND block cannot
be accurately predicted by using a simple NAND aging model
based on the number of P/E cycles. For example, even when
two blocks had the same number of P/E cycles, their copyback
threshold values can range from 3 to 5. By exploiting per-block
differences during run time, our model significantly increases
the copyback threshold of most NAND blocks over FastGC.

Second, we devise an efficient error management scheme
that can handle successive copyback operations where pages
move around multiple blocks with different reliability. When
a page is migrated through blocks with different copyback
thresholds, our scheme accurately maintains the remaining
copyback balance of the page regardless of different copyback
thresholds of migrated blocks. In managing the remaining
copyback balance of a page, our scheme employs a per-
block scheme instead of a more direct per-page scheme as
used in FastGC. Unlike the common perception, the per-
block management scheme, which can significantly reduce the
memory and flash requirement over the per-page management
scheme, improves both the performance and lifetime of SSDs.
As a side effect of the per-block management, our scheme
naturally separates data with different lifetimes into different978-1-7281-3854-1/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:21:31 UTC from IEEE Xplore. Restrictions apply.

blocks, thus achieving the high GC efficiency. By mitigating
the flash requirement of the per-page management, our scheme
improves the write amplification factor (WAF) as well. In the
rest of the paper, we call the proposed copyback scheme as
rCPB.

In order to evaluate the effectiveness of the rCPB scheme,
we implemented an rCPB-aware FTL, rcFTL. We have evalu-
ated rcFTL using various benchmarks on our SSD emulation
environment [9]. Our experimental results show that rcFTL can
improve the overall I/O throughput up to 25% over FastGC.
In addition to basic extensions for supporting rCPB, rcFTL

implements an intelligent data-migration mode selector for
maximizing the effect of rCPB on the SSD performance. The
mode selector decides whether to use off-chip copy operation
or rCPB when performing a data migration depending on the
I/O intensity of host I/O workloads. The experimental results
show that the mode selector can improve the I/O throughput
by up to 12% over when it is not used.

The rest of this paper is organized as follows. In Section II,
we review the data migration in modern SSD and explain why
NAND aging-aware copyback is needed. Section III describes
the proposed rCPB operation. In Section IV, we present our
design and implementation of rcFTL in details. Sections V
and VI describe our evaluation results and related work,
respectively. We conclude in Section VII with a summary.

II. MOTIVATIONS

A. Data Migration in Modern SSD

A typical data migration in SSDs is performed by an off-
chip data copy. An SSD firmware reads data from a source
page and transfers the data to a DRAM buffer through a
channel bus. Before the data are sent to the DRAM buffer,
errors are corrected by the ECC module of the flash memory
controller (FMC). In the program phase, the SSD firmware
takes a reverse data path from the DRAM buffer to the target
page. The data copy time tCOPY can be expressed as follows:
tCOPY = tR + tDMAout + tDMAin + tPROG where tR,
tDMAout and tDMAin are a data transfer time from NAND
cells to a per-plane register and a DMA out/in time between
the register and DRAM buffer, respectively. However, a large
number of data migrations may occur at the same time in
a modern SSD. A high degree of the parallelism in data
migrations may significantly increase tDMAin and tDMAout

because of contentions on the channel level as well as the serial
bus to/from the DRAM buffer. This is because the bandwidth
of the DRAM is limited and the efficiency of the DRAM
degrades when many masters request DRAM at the same time.

On the other hand, when a copyback operation is used,
a data migration can be performed without requiring neither
tDMAout nor tDMAin . The FTL can read data from the source
page to the per-plane local register and directly write back to
the destination page from the per-plane local register. Since the
copyback operation transfers data within a given plane, even
when multiple data migrations occur at the same time, all data
migrations can be completed by (tR + tPROG). Thus, it can
significantly reduce the overhead of data migrations especially
for modern SSD of multiple channels and multiple ways.

�

�

�

�

�

��

�� �� �� 	� ��
� ��

�
�

�
�
��

�
��

�
��

��
�
��

����������� !�������

Fig. 1: Copyback threshold variations on different P/E cycles.

B. Need for Block Aging-Aware Copyback

Generally, the number of P/E cycles has been mainly used
as the indicator of NAND aging. During NAND operations,
the high voltage used in the erase operation damages the tunnel
oxide of the NAND cells, thus increasing the Bit Error Rate
(BER) observed in subsequent reads. As the number of P/E
cycles increases, the tunnel oxide layer eventually reaches
a state in which the cells can no longer store information
reliably. Since erase operations are responsible for the wear
of NAND cells, the number of P/E cycles has been regarded
as a good proxy indicating the wear of NAND cells.

However, the number of P/E cycles alone cannot accurately
represent the exact wear status of NAND cells. For example,
when two NAND blocks experience the same number of
P/E cycles, their BER could be significantly different [10].
This difference is mainly caused by process variations in the
manufacturing and is accelerated by various user environments
such as operating temperature. From our characterization
study using 3D TLC NAND chips [8], we observed that the
copyback threshold of a block cannot be accurately estimated
by only using the P/E cycles as a wear indicator of NAND
cells. Fig. 1 shows that, even at the same P/E cycles, there is
a large variation on the copyback threshold count. In FastGC,
since a single copyback threshold value was used for all the
blocks with the same P/E cycles, the copyback threshold was
conservatively selected, thus missing many opportunities for
additional copybacks on most blocks.

The rCPB scheme proposed in this paper was mainly moti-
vated from how to exploit these missed copybacks. From our
characterization study, which will be described in Section III,
we observed that the copyback threshold of a NAND block
can be accurately predicted when the P/E cycles of the NAND
block is augmented with the BER value measured right after a
program operation. Using this extended NAND wear indicator,
most of the missed copybacks in FastGC can be successfully
utilized under the rCPB scheme.

III. RCPB: COPYBACK WITH A LIMIT

A. Error-Propagation Characteristics

In order to manage the flash reliability problem caused
by successive copyback operations, it is important to un-
derstand the NAND error propagation characteristics when
the same page experiences consecutive copybacks without
error correction by the ECC module. We conducted a NAND
reliability characterization study using 30 actual 3D TLC
NAND chips [8] to better understand the error propagation

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:21:31 UTC from IEEE Xplore. Restrictions apply.

�

�

�

	

�

�� �� �� 	� ��
� ��

�
�
��

��
"#

��
�$

!
%

����������� !�������

&���'�$!%�������

$��'�$!%�������

(��"�)�$!%�������

(a) BER variations over P/E cycles.

�

�

�

	

�

�

� � 	 �
 � * �

�
�
��

��
"#

��
�$

!
%

������������)����'"+����������

���� !�,����'�$!% ���� !�,�-���'�$!%

	��� !�,����'�$!% 	��� !�,�-���'�$!%

(�."����!����"�"'

(b) BER variations over block characteris-
tics.

�

�

�

	

�

�

�/

�

�/

	

	/

�

�
�

�
�
��

�
��

�
��

��
�
��

(c) Copyback thresholds distribution.

Fig. 2: Key results of the NAND characterization study.

characteristics under successive copybacks. In order to take
into account of block-to-block variations as well as page-
to-page differences, we selected 128 blocks from each chip
where their physical locations were evenly distributed within
the chip. For a selected block, we tested all the pages in the
block. In our study, a total of 3,840 blocks and 2,211,840 pages
were evaluated to obtain statistically significant experimental
results.

In order to derive the proposed rCPB model, we first
evaluated the reliability differences within NAND blocks with
the same P/E cycles. As a measurement of the block reliability,
we used the BER value of a block immediately after a program
operation. Since the BER value is computed right after the
block is programmed, no BER degradation is added from the
retention errors or read disturb errors, so that the measured
BER represents the block reliability level more accurately.
Fig. 2(a) shows how BERs fluctuate within blocks with the
same P/E cycles. As expected, large BER variations exist
among the same aged blocks by P/E cycles. For example, the
BER of the worst block is 1.8-times larger than that of the
best block when the number of P/E cycles is 6K. As shown in
the box plot, BER values of most blocks are clustered around
the average BER of a given P/E cycles. On the other hand,
the worst BER values make BER distribution long-tailed ones.
This contributes many missed copybacks in FastGC.

In order to characterize the effect of the block reliability
level on the copyback threshold, we observed how BERs
change over successive copybacks when the block reliabil-
ity level changes. We divided the blocks according to the
measured BER characteristics and evaluated the difference of
error accumulation characteristics by copyback operations for
each group. Fig. 2(b) illustrates our evaluation results on the
best BER blocks and the worst BER blocks under the initial
(i.e., 0K) P/E cycle condition and 3K P/E cycle condition, re-
spectively. (We used the 3-month retention requirement in this
evaluation.) Under all conditions, the worse BER characteristic
of the blocks, the larger the error accumulation due to the
copyback operations. Considering the error accumulation level
due to copyback operations for each group and the correction
capability of the ECC module, it is possible to make the
copyback thresholds for each condition.

Fig. 2(c) shows how the copyback threshold value changes
under each P/E cycle condition when considering the retention
requirement with block BER characteristic. The retention
requirement was assumed to be one year at 30◦C. Even at
the same P/E cycles, the copyback threshold varies greatly
depending on BER characteristic of the NAND blocks. When
P/E cycle is 3K, the best BER block can use two more
copyback operations than the worst BER block. Therefore,
by distinguishing the block reliability level, the total number
of copybacks can increased over the block-unaware worst-
case setting of FastGC. In order to identify the copyback
threshold accurately, we considered the properties of P/E
cycles, retention time requirement, all possible data migration
cases between source and destination pages, and the different
characteristics between NAND blocks.

B. RCPB Operation Model

From our characterization study on the copyback error
propagation, we constructed the copyback threshold table,
CTT (x, e, t), which indicates the maximum number of con-
secutive copyback operations that does not cause any re-
liability problem for x P/E-cycled blocks of BER value e

under the condition of t-month retention requirement. Table
I summarizes our proposed rCPB operation model with the
different retention requirements. If 1-year retention is required
at 2K P/E cycles, the copyback threshold of NAND block is
determined from 2 to 4 based on the value of p. If the data
migration is required more than the copyback threshold, the
page must be migrated using an off-chip data copy, thus the
accumulated bit errors can be corrected by the ECC module.
As the table shows copyback threshold can be increased on
3-month retention. In this paper, we used 1-year retention as
a basic requirement in accordance with JEDEC standards.

TABLE I: The proposed rCPB operation model.

Retention

requirement

Block BER

characteristic

P/E cycles

[0K∼0.4K] (0.4K∼1K] (1K∼2K] (2K∼3K] (3K∼4K] (4K∼5K]

1 year

Best block 5 4 4 3 3 2

Median block 5 4 3 3 2 1

Worst block 3 2 2 1 1 0

3 months

Best block 6 5 4 4 3 2

Median block 6 5 4 3 3 2

Worst block 4 3 2 2 1 1

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:21:31 UTC from IEEE Xplore. Restrictions apply.

���������	
��
�

��������	
����
�

�
����������

��������������

��������������
��

������������ ����� ����

���������������������

���� �
�!�	
�����!�
"#
�����������

�#���������$��
 �
�!����������

	
�����!
������
��

���
����
�����
������������%���&
��������
�����

'���� #((��

)	� *((�	����	
��

����������
���
���+����
��
%���+&

��
�
���
��

'������$����

�
���
���
����

�
����
#�� ��!��
#��

Fig. 3: An organizational overview of rcFTL.

IV. DESIGN AND IMPLEMENTATION OF RCFTL

Based on the proposed rCPB model presented in Sec-
tion III, we implemented an rCPB-enabled flash translation
layer (FTL), called rcFTL, which is based on the existing page-
level mapping FTL. Fig. 3 shows an overall organization of
rcFTL. RcFTL consists of two additional modules, the error
propagation management (EPM), and the data migration mode
selector (DMMS). The EPM module is in charge of checking
the rCPB availability for a data migration while the DMMS
module selects the most appropriate data migration mode for
a given data copy request.

A. EPM module

1) Quota-Based Determination of RCPB Availability: The
EPM module plays a key role to ensure the data reliability
while rcFTL maximally uses rCPB operations. When an rCPB
operation is desired in moving a page, the EPM module
checks its availability. A key challenge in determining the
rCPB availability is that pages are moved across various blocks
that have different copyback thresholds. If a page migration is
(somehow) managed to move pages only within NAND blocks
with the same threshold, determining the rCPB availability is
straightforward. All we need is to keep every page’s rCPB
count less than the threshold of those blocks. However, such
a page migration management is rather impractical because it
significantly obstructs a flexible page allocation of an FTL.

In order to effectively determine the rCPB availability of
page migrations across blocks with different thresholds, the
EPM module employs quota-based rCPB model which regards
the copyback threshold of a block as the quota spent upon the
rCPB from the block. For example, if the copyback threshold
of a block is CT , the EPM module considers that a copyback
operation from the block deducts 1

CT
of the maximum quota

which is initially given the same amount for every block.
This is based on our observation that the error-propagation in
successive rCPB operations at the same block is almost linear
(even though the error increase per rCPB operation varies in
different blocks).

Fig. 4 shows how rcFTL deals with the page migrations
with the quota-based rCPB model. The EPM module keeps
track of the copyback quota Q(pi) for every page where pi
indicates a page whose index is i in an SSD. When a page px
is programmed by a host write, Q(px) is initialized with Qinit

�

�

0��'�&�"'�
������	��
 �� ��

���

� �
� �

� � � �

� � �

� � �
� �

� �

� � �

� �

� �

� �
� �

� �

���$
���$

���$

!.'��)������

Fig. 4: An illustrative example of the quota transition.

(� in Fig. 4). Once rcFTL moves px using an rCPB operation
from block bn to bm, the EPM module decreases Q(px) by
deducted quota, Qinit

CT (bn)
(�), where CT (bn) is the copyback

threshold of bn. We can obtain CT (bn) just by retrieving the
predefined CTT with PE(bn) and BER(bn)

1. For a simple
management of Q(pi), we set Qinit to the least-common-
multiple value of all the present values in the CTT. As long
as Q(px) ≥ 0, px can be moved through successive rCPB
operations (� and �). On the other hand, if the deducted
quota of the source block bj , Qinit

CT (bj)
, is large enough to make

Q(px) less than 0, the EPM module only allows off-chip copy
so that Q(px) is initialized with Qinit (�).

2) Per-block Quota Management: Although the quota-
based approach is effective in determining the rCPB availabil-
ity, managing Q(pi)’s in a per-page fashion may introduce
non-trivial space overhead, considering the capacity increase
of the modern SSDs. For example, suppose that Qinit is 30 and
rcFTL manages 4-KB logical-to-physical mappings in a 16-TB
SSD. In such a case, at least more than 2.5-GB2 memory space
is additionally required for the per-page quota management.

In order to avoid the overhead of per-page quota manage-
ment, EPM module employs a per-block quota management
approach. That is, the amount of copyback quota deducted by
rCPB operations is managed at the block level, not at the page
level. Since the number of entry for the per-block management
is at least two orders of magnitude smaller than that for the
per-page management, the per-block management technique
significantly reduces the memory footprint for the copyback
quota and minimizes the computing overhead of bookkeeping
operations to a negligible level. Since all the pages in a block
are assumed to have the same amount of the copyback quota
in the per-block quota management, when a source page p

in a victim block bv[Q(bv), dQ(bv)] with the copyback quota
Q(bv) and the deducted quota dQ(bv) is migrated by rCPB,
the page p should be moved to a page in a block bd where
Q(bd) = Q(bv) − dQ(bv). In order to efficiently support
this additional constraint, the EPM module manages multiple

active blocks per plane at the same time. Fig. 5 shows an
example of how data migrations are performed using rCPB
operations in the per-block quota management. If the Qinit

is given by 6, the EPM module maintains five active blocks
whose copyback quota is divided into 0, 2, 3, 4, and 6. When

1P/E cycles of block bn, PE(bn), is maintained in typical SSDs, so rcFTL

needs to additionally keep track of BER(bn) as explained in Section III.
2(5[bit

page
]× 16× 1012[byte

SSD
]× (4× 109[byte

page
])−1 = 2.5× 109[byte

SSD
])

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:21:31 UTC from IEEE Xplore. Restrictions apply.

1

0

2 �

3

!

45

(��'"�����'"+��������������)�

6)+��"�

6)+��"�

6)+��"�

3

6)+��"�

6)+��"�

6)+��"�

6)+��"�
5

2

$

�

1

0

6)+��"�

!

4

$

�������� ����	
��	���

��	
� ��	 �� �
	
� ��	 �

� � � � �� �

Fig. 5: Data migrations in the per-block management.

a block bv2[6, 3] is selected as a GC victim block, its valid
pages, C and D, are moved to the active block ba3 which has
the quota of 3 by rCPB operations. On the other hand, if the
block bvn[0, x] is selected as a GC victim block, its valid pages
are moved using off-chip copies to the active block ba1 which
has the initial quota, 6.

B. Data Migration Mode Selection

In order to take full advantages of rCPB, the DMMS module
intelligently chooses when to use rCPB over a normal off-chip
copy depending on the write buffer utilization ratio u. When
u is low, which indicates that the current host I/O workload
is not intensive, the DMMS module selects the off-chip copy
mode so that more future data migrations can be supported
by rCPB. On the other hand, when u is high, the DMMS
module chooses the rCPB mode for higher performance. In
our current implementation, the utilization threshold ratio for
the mode selection was set to 50%. (That is, if u is higher
than 50%, the rCPB mode is used for data migrations.) Since
rcFTL employs the per-block quota management scheme and
most data migration decisions are made in a block granularity,
the DMMS module makes its mode selection decisions in a
per-block level as well. When a data migration decision is
made (e.g., by a foreground GC task), the DMMS module
selects a proper mode based on the current u value. In order
to filter out abrupt noise-like changes in u, the DMMS module
makes its mode selection based on a t-second moving average
of u. In the current implementation, t is set to an average
block write time.

In rcFTL, both the GC and wear leveler operate in an
rCPB-aware fashion. For urgent management tasks (such as
a foreground GC task), the rCPB mode is actively used
regardless of the current u ratio value. On the other hand,
when background management tasks (such as a background
GC task) are invoked, the DMMS module decides proper
modes as explained above.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to evaluate the effectiveness of the proposed rcFTL

technique, we implemented rcFTL as a host-level FTL on
a custom flash storage system [9]. For our evaluation, we
configured our flash storage system to support a 128-GB
storage capacity only for efficient experimental evaluations.
Our emulated storage system was configured to have eight

TABLE II: I/O characteristics of traces used for evaluations.

OLTP NTRX Varmail Fileserver

Read:Write 7:3 0.5:9.5 4:6 4:6
WAF 2.0 2.3 2.7 5.4

channels with eight NAND flash chips per channel. Each
NAND flash chip has 1024 blocks which are composed of
128 16-KB pages and NAND interface which supports up to
533 MT/s. The average tPROG was set to 660 us [8] and the
size of the write buffer was set to 10 MB. We evaluated rcFTL

using four I/O traces generated from Sysbench and Filebench.
As shown in Table II, each workload has different ratios
between read and write and different WAF values. Using these
workloads, we evaluated the overall I/O throughput for six
different P/E cycle conditions where the copyback threshold
counts are distinguished and compared them with the existing
techniques. All measurements were normalized over a page-
level mapping FTL which always migrates data using the off-
chip copy.

B. Evaluation Results

Fig. 6(a) shows the normalized I/O performance for each
workload under various P/E cycle conditions. The proposed
rcFTL has better performance compared to the existing FastGC
method for all workloads because it uses block-aware copy-
back threshold effectively and the per-block management
scheme for the copyback quota improves the WAF value. The
overall I/O throughput was improved by 43% on average of
four workloads in initial P/E cycle over the baseline FTL. It
also improved I/O throughput by 25% over the FastGC method
when P/E cycles is 5K. When blocks are young, most data
migrations can be supported by copybacks even in the worst
blocks. As the copyback threshold increases, the degree of
performance improvement due to rCPB degrades, most of the
improvements in young blocks over FastGC comes from per-
block management of rcFTL. On the other hand, as shown in
Fig. 6(b), as blocks get older, the impact of block-aware rCPB
scheme grows. For example, the performance improvement by
block-aware rCPB is 14% when the P/E cycle is 5K.

In order to analyze the effect of per-block management
of rcFTL, we compared the WAF value of rcFTL and exist-
ing per-page management. Fig. 7(a) shows normalized WAF
value based on baseline FTL. Overall, per-block management
scheme of rcFTL showed lower WAF than per-page manage-
ment for all conditions. Although the overhead of per-page
management was amplified due to the small number of pages
per block by limited capacity, the WAF value was increased
in per-page management as the copyback threshold increases
in OLTP and Varmail. On the other hand, the per-block
management of rcFTL decreased WAF value as the copyback
threshold increases. This is the result of separating data with
different lifetimes into different blocks through multiple active
block management of per-block scheme without consuming
flash resources. However, there was no WAF reduction effect
of per-block management on FileServer. This is because the
workload has a strong random update characteristic that does
not have any significant locality.

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:21:31 UTC from IEEE Xplore. Restrictions apply.

�/*

�

�/�

�/

�/*

����	 ����, ����	 ����, ����	 ����, ����	 ����, ����	 ����,

��)- *,�� .������ ����+��$�� �$�����

�
�
��

��
"#

��
�6

 7
��

�
��

�
8
�

�
'

� !��� � !��� � !�	� � !�
�

��9

��9

(a) Normalized I/O throughput. (b) Improvement

�

��

�

��

�

	�

�� �� 	�
�

6�

��

+
��

�)
'�

%
�'

"�
�:

9
;

����������� !�������

$��<�-�������$

���<������)�8���)'

breakdown.

Fig. 6: Performance comparison between FTLs.

�/�

�/=

�

�/�

�/�

������� �����	
� ������� �����	
� ������� �����	
�

��� �	��	�� ����������

�
�
��

��
"#

��
�&

2
4

� !��� � !�	� � !�
�

(a) Per-block management.

�

�/�

�/�

�/�

��� �� ���

�
�
��

��
"#

��
�6

 7
��

�
��

�
8
�
'

�
'

&��������6)'�)�"'�

� !��� � !��� � !�	� � !�
�

(b) Migration mode selector.

Fig. 7: Effectiveness of each FTL module.

In order to understand how the mode selector proposed
in rcFTL performs, we compared the performance of rcFTL

with rcFTL– (which uses rCPB in a greedy fashion). Fig. 7(b)
shows normalized performance gain of rcFTL over rcFTL–

under varying I/O intensity. In order to generate workload
fluctuations, which are needed to properly evaluate the DMMS
module, we generated three synthetic workloads, High, Mid

and Low, using Fio benchmark. In High, 70% of I/O requests
were issued without inter-request idle times while 30% were
issued with some idle times. For Mid and Low, the ratio
between two requests is 50:50 and 30:70, respectively. When
the I/O intensity is lower than the threshold, since the off-chip
copy mode is more likely to be used in rcFTL, rCPB-eligible
blocks tend to increase over rcFTL– because the copyback
quota of more blocks are reset. The increased number of rCPB-
eligible blocks, in turn, improves the I/O throughput when the
I/O intensity is higher than the threshold. Fig. 7(b) shows that
the performance gain is higher when the workload intensity
is Low. The performance is further improved, especially in
small copyback threshold conditions, which shows that the
mode selector works effectively.

VI. RELATED WORK

There have been several studies to improve the performance
of flash-based storage systems with the copyback operation.
However, many existing techniques [11]–[13] are not applica-
ble for modern NAND flash memory because they assumed an
ideal SLC NAND flash memory where no error propagation
occurs from successive copyback operations. Other studies
such as Jang et al. [14] considered the error propagation
problem in their techniques. However, their solutions was to
bring data out to the ECC module to check the validity of
data, thus minimizing the potential benefit of using copyback.
In recent study of Wu et al. [7], they proposed a technique
that can use copyback without error propagation based on

NAND characterization for the first time. However, there is a
lot of room for improvement because their method is a naive
approach and there is overhead for error propagation man-
agement. Our technique differs from the existing technique in
that it maximizes the potential benefits of copyback by taking
both block characteristics and host workload characteristics
into account, and has full control over error propagation issues
with minimal overhead.

VII. CONCLUSIONS

We have presented rCPB to minimize the performance
degradation from data migrations in modern SSDs. From a
NAND characterization study, we developed an rCPB opera-
tion model that takes as the key inputs block characteristics
and data retention requirement. Based on the rCPB operation
model, we have implemented an rCPB-aware FTL, rcFTL,
which intelligently manages when to use rCPB for a given
I/O workload requirement. Our experimental results show that
rcFTL can improve the overall I/O throughput up to 25% over
the existing technique.

VIII. ACKNOWLEDGEMENTS

This work was supported by Samsung Research Funding
& Incubation Center of Samsung Electronics under Project
Number SRFC-IT1701-11.

REFERENCES

[1] A. Gupta et al., “Dftl: A flash translation layer employing demand-
based selective caching of page-level address mappings,” in Proc. Int’l
Conf. Architectural Support for Programming Languages and Operating
Systems, 2009.

[2] J.-U. Kang et al., “A superblock-based flash translation layer for nand
flash memory,” in Proc. Int’l Conf. Embedded Software, 2006.

[3] J. Kim et al., “A space-efficient flash translation layer for compactflash
systems,” IEEE Trans. Consumer Electronics, vol. 48, no. 2, pp. 366–
375, 2002.

[4] S.-W. Lee et al., “Fast: An efficient flash translation layer for flash
memory,” in Proc. Int’l Conf. Embedded and Ubiquitous Computing,
2006.

[5] H. Kim et al., “Evolution of nand flash memory: from 2d to 3d as a
storage market leader,” in Proc. Int’l Memory Workshop, 2017.

[6] Tn-29-15: Nand flash internal data move idm overview. [Online]. Avail-
able: https://www.micron.com/∼/media/documents/products/technical-
note/nand-flash/tn2915.pdf

[7] F. Wu et al., “Fastgc: Accelerate garbage collection via an efficient
copyback-based data migration in ssds,” in Proc. Design Automation
Conf., 2018.

[8] D. Kang et al., “256gb 3b/cell v-nand flash memory with 48 stacked wl
layers,” in Proc. Int’l Solid-State Circuits Conf., 2016.

[9] S.-W. Jun et al., “Bluedbm: An appliance for big data analytics,” in
Proc. Int’l Symp. Computer Architecture, 2015.

[10] Y. Pan et al., “Error rate-based wear-leveling for nand flash memory
at highly scaled technology nodes,” IEEE Trans. on Very Large Scale
Integration Systems, vol. 21, no. 7, pp. 1350–1354, 2013.

[11] Y. J. Seong et al., “Hydra: A block-mapped parallel flash memory solid-
state disk architecture,” IEEE Trans. Computers, vol. 59, no. 7, pp. 905–
921, 2010.

[12] A. R. Abdurrab et al., “Dloop: A flash translation layer exploiting
plane-level parallelism,” in Proc. Int’l Symp. Parallel and Distributed
Processing, 2013.

[13] W. Wang and T. Xie, “Pcftl: A plane-centric flash translation layer
utilizing copy-back operations,” IEEE Trans. Parallel and Distributed
Systems, vol. 26, no. 12, pp. 3420–3432, 2015.

[14] W. T. Chang et al., “An efficient copy-back operation scheme using
dedicated flash memory controller in solid-state disks,” Int’l Journal of
Electrical Energy, vol. 2, no. 1, pp. 13–17, 2014.

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:21:31 UTC from IEEE Xplore. Restrictions apply.

