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Abstract — The performance and lifetime of high-

performance solid-state drives (SSDs) can be improved by 
data compression, which can reduce the amount of data 
physically transferred from/to flash memory. In this paper, 
we present our experience of building a high-performance 
solid-state drive using a hardware accelerated compression 
module called BlueZIP. In order to fully exploit the BlueZIP 
module, we devise a compression-aware flash translation 
layer (FTL), called CaFTL, which supports compression-
aware address mapping and garbage collection for BlueZIP. 
For poorly compressed pages, CaFTL supports selective 
compression so that unnecessary compression can be 
avoided. We have implemented a complete SSD prototype 
with BlueZIP on an FPGA-based custom SSD platform and 
evaluated its effectiveness using realistic workloads. Our 
evaluation results show that BlueZIP can increase the 
lifetime of the SSD prototype by 26% as well as improve 
read and write performance by 20% and 27%, respectively, 
on average1. 
 

Index Terms — Solid-State Drive, NAND Flash Memory, 
Flash Translation Layer, Data Compression.  

I. INTRODUCTION 

NAND flash-based solid-state drives (SSDs) have 
recently emerged as an attractive solution for consumer 
devices and desktop systems thanks to the continued scale-
down of a NAND memory cell size combined with the use 
of multi-level cell (MLC) technology. As the density of 
flash memory cells increases, however, the performance and 
reliability of flash memory may deteriorate significantly [1]. 
For example, single-level cell (SLC) flash memory 
fabricated with the 34 nm process allows a flash block to 
have 100,000 program/erase (P/E) cycles, whereas MLC 
flash memory at the same 34 nm process supports only 
5,000 P/E cycles per block. The performance of MLC flash 
memory is also several times slower than that of SLC flash 
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memory. Moreover, as the semiconductor process is further 
scaled down, it is expected that these problems will be 
getting worse. 

One of the promising approaches that can mitigate these 
problems is to use hardware accelerated compression. Since 
the lifetime of flash-based SSDs strongly depends on the 
amount of data written to the SSDs, data compression, 
which reduces the actual amount of data written to the SSDs, 
can be an effective solution to improve the lifetime of the 
SSDs. Furthermore, if compression can be supported by a 
hardware acceleration unit, it can also improve the 
performance of SSDs because a smaller amount of data are 
physically transferred during I/O operations over 
uncompressed reads and writes. 

The idea of using data compression for data storage is not 
new and has been widely studied. For example, many 
existing file systems support software-based data 
compression to expand the effective capacity of a storage 
device. Although software-based compression approaches 
can be useful in improving the lifetime of SSDs, they incur a 
considerable compression/decompression overhead, thus the 
overall SSD performance deteriorates significantly. 
Therefore, software-based compression is usually employed 
when the storage capacity is one of the most important 
design goals. 

  An obvious solution for the problem of software-based 
compression is to use a special hardware accelerator. 
Although some SSD companies are believed to employ 
hardware-accelerated compression in their products, there is 
no known literature that describes such SSDs in detail. For 
example, recent investigations [2], [3], which discuss data 
compression in flash memory, only focus on software-side 
design and implementation issues. For the hardware design 
issues, the existing techniques either assume a magic 
compression hardware accelerator with no performance 
penalty or do not present their design in detail. 

In this paper, we describe our experience of building a 
hardware compression module, called BlueZIP, which was 
designed for flash-based SSDs. BlueZIP is implemented using 
an FPGA-based SSD prototype called BlueSSD [4], thus 
allowing us to evaluate the pros and cons of hardware 
accelerated compression in real settings. Efficient software 
support is another crucial issue in realizing the potential 
benefit of data compression. To this end, we propose a 
compression-aware flash translation layer, called CaFTL, 
which provides support for compression-aware address 
mapping and garbage collection. CaFTL also supports 
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selective compression to avoid useless data compression for 
the data which exhibit a low compression ratio. Our 
evaluation results using various benchmark programs show 
that BlueZIP lowers the amount of data written to flash 
memory by 26%, improving the lifetime of SSDs by a similar 
amount. Read and write speed of SSDs are also improved as 
well by 20% and 27% on average, respectively. 

The rest of this paper is organized as follows. In Section II, 
we briefly review previous works related to data compression 
in NAND flash memory. In Section III, we explain the 
architecture of the proposed BlueZIP in detail, including its 
hardware architecture and software architecture. Experimental 
results are given in Section IV. Section V concludes with a 
summary and directions for future work. 

II. RELATED WORK 

Several research groups have investigated using data 
compression for NAND flash memory. Yim et al. [2] 
proposed a flash compression layer to increase the effective 
storage capacity. They focused on resolving the internal 
fragmentation problem that occurs when the size of 
compressed data is smaller than that of a single flash page 
(which is a unit of read and write operations in NAND flash 
memory). They mitigated this fragmentation problem by 
introducing an internal packing scheme. Park et al. [3] 
proposed another flash translation layer, called zFTL, which 
employs data compression to improve the endurance of 
NAND flash memory. zFTL takes account of compressed data 
in both address mapping and garbage collection. Unlike our 
proposed work, these two techniques are limited in their 
contributions because they assumed that hardware 
compression/decompression modules incur no performance 
penalty for compressing and decompressing data. They also 
did not explore important design issues such as 
compression/decompression speed and the amount of the 
required hardware resource. Furthermore, they have not 
considered interactions between the compression software and 
hardware layers for more optimized designs. 

There also have been several studies for hardware-
accelerated compression, especially for the main memory 
system. For example, X-Match is one of the representative 
compression algorithms designed for main memory 
compression [5]. X-Match achieves a reasonable compression 
ratio for memory data, effectively increasing the memory 
capacity. X-Match, however, is not suitable to be used for 
secondary storage like solid-state drives because of its design 
limitations. For example, X-Match is optimized to compress 
small-size data such as several bytes of data (e.g., 4 bytes), 
which is the unit of data transfer between CPU and main 
memory. When X-Match is used for compressing large-size 
data such as 8 KB pages in SSDs, it performs poorly. Unlike 
X-Match, BlueZIP is designed to provide better 
compressibility for a large amount of streaming data whose 
size is several KBs and, therefore, more suitable for a 
secondary storage device. 

 
Fig. 1. An overall SSD architecture with BlueZIP. 

III. BLUEZIP 

Fig. 1 shows an overall organization of our prototype SSD 
with BlueZIP. BlueZIP is implemented as one of the hardware 
modules within BlueSSD [4], which is an open SSD platform 
built on top of a general-purpose FPGA board combined with 
a custom flash board, called BlueFlash. BlueSSD uses the 
embedded processor included in the FPGA as a main SSD 
controller, so as to execute our proposed FTL and the Linux 
kernel. The flash controller is in charge of transferring the 
data from/to the BlueFlash board and is composed of two 
hardware modules: a DMA controller and a flash bus 
controller. The DMA controller receives commands from the 
processor and transfers data from/to DRAM through the 
system bus. The flash bus controller performs several flash 
operations, including read, write, and erase operations, and 
moves the data from/to flash chips in the BlueFlash board. 

The BlueZIP module is implemented between the DMA 
controller and the flash bus controllers. The main role of 
BlueZIP is to perform compression or decompression for the 
data being transferred from the DMA controller or from the 
flash bus controller, respectively. BlueZIP uses the LZRW3 
algorithm [6], a variant of the LZ77 algorithm, because it 
achieves a good compression ratio without high computational 
burden. The LZRW3 algorithm has been significantly 
modified in BlueZIP so that its hardware implementation 
becomes efficient. 

 

A. Hardware Architecture of BlueZIP 

In this subsection, we describe the hardware architecture of 
BlueZIP. We first explain the compression module of BlueZIP 
in detail and then briefly introduce data decompression steps. 
We also discuss the issues related to internal fragmentation 
that occurs when data compression is used in NAND flash 
memory [2] and then explain our approach to mitigate this 
fragmentation problem. 

 
1) Compression Module 

Fig. 2 shows an overall architecture of the compression 
module of BlueZIP, which is composed of four hardware 
submodules: a shift register, a dictionary, a compression logic, 
and a compression buffer. The shift register holds the data to 
be tested for compression and the dictionary table contains 
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repeated patterns previously seen. The compression logic 
converts the data in the shift register to symbols by referring 
to the dictionary. The compressed data, a sequence of symbols, 
are stored in the compression buffer and moved eventually to 
a flash chip. 
 

 

Fig. 2. An overall architecture of the compression module of BlueZIP. 

 
BlueZIP fetches the data from the DMA buffer, which 

keeps the entire data sent from the host, until the shift 
register is fully filled. The compression logic creates a hash 
value using the first 3 bytes of the data in the shift register, 
which are used as a dictionary index for the dictionary table. 
The compression logic then checks the data entry where the 
dictionary index points. If the first 3 bytes of the 
corresponding data entry is equivalent to those of the shift 
register, we assume that we found a matching pattern from 
the dictionary. When the compression logic finds a matching 
data entry, it compares the remaining bytes in the shift 
register with those in the data entry and finds the common 
part of the data between the shift register and the data entry. 
This common part is called a data segment. The compression 
logic creates a symbol by combining the dictionary index 
and the length of the data segment, along with a 
compression flag whose value is ‘1’. The compression flag 
indicates if the symbol represents compressed data or 
uncompressed data. The symbol created is then written to 
the compression buffer. Finally, the whole data segment is 
discarded from the shift register, and the new data are 
transferred to the shift register from the DMA buffer.  

When we do not find a matching pattern from the dictionary, 
we create a symbol only for the first byte of the data. A 9-bit 
symbol is created by adding one-bit compression flag (whose 
value is 0) to the first byte of the shift register. After the 
symbol created is written to the compression buffer, a new 
byte of the data from the DMA buffer is appended to the tail 
of the shift register, discarding the first byte of the shift 
register. Note that when a matching pattern is not available in 
the dictionary, the old pattern in the data entry to which the 
hash value points is replaced by the new pattern in the shift 
register for supporting newly found patterns. 

In our compression scheme, a single byte of the data may 
be expanded into a 9-bit symbol (8 bits for the original data; 1 
bit for a compression flag) if a single byte data cannot be 
compressed. If a compression ratio is low, the amount of the 

data actually written after compression can be bigger than the 
original data. In order to solve this problem, BlueZIP supports 
a selective compression function, which allows the FTL to 
determine whether the requested data should be stored in a 
compressed form or an uncompressed form. If the FTL 
decides to write data without compression, the compression 
filtering module of BlueZIP sends the requested data to the 
flash bus controller directly, bypassing the compression 
module. 

The size of the shift register as well as the size of the 
dictionary has a significant effect on a compression ratio. As 
their sizes increase, a better compression ratio can be obtained 
at the cost of using more hardware resources. Currently, the 
shift register and the dictionary are set to 18 bytes and 36 KB 
(= 211×18 bytes), respectively. This setting requires a small 
amount of hardware resources, but provides a reasonable 
compression ratio. In Section IV, we will analyze the effect of 
the dictionary table size on a compression ratio in detail. 

 
2) Decompression Module 

Data decompression of BlueZIP is very similar to its data 
compression except that the processing steps are reversed. 
BlueZIP fetches the data from the flash bus controller and 
decides if the data are compressed or not by checking a 
compression flag. If the data are compressed, BlueZIP restores 
the original data by using the dictionary index which indicates 
the data entry in the dictionary, along with the length of the 
data segment. In BlueZIP, the dictionary is reconstructed on-
the-fly at data decompression, so additional metadata for 
decompression is not required. 

 
3) Granularity of Data Compression 

In order to take full advantage of the benefit of data 
compression, BlueZIP should provide a meaningful 
compression ratio so that a large number of page writes can be 
eliminated. Unfortunately, NAND flash memory must be 
programmed and be read in a unit of one page. Therefore, it is 
difficult to avoid internal fragmentation that occurs when the 
size of compressed data does not fit into a unit of a page. This 
fragmentation problem wastes valuable storage capacity and, 
more importantly, reduces the overall compression ratio. The 
simple but effective way to mitigate such an internal 
fragmentation problem is to increase the number of pages 
compressed together, which is called a data chunk in this 
paper. 

Data compression with a large data chunk, however, has 
two main drawbacks. First, a large data chunk hurts the read 
performance. In order to read a page from flash memory, the 
entire data chunk that holds the requested page should be 
decompressed first. Second, data compression with a large 
data chunk requires more hardware resources. As the size of a 
data chunk increases, a hardware accelerator needs a larger 
memory space because it keeps more data in the buffer 
memory while performing data compression/decompression. 
As will be discussed in Section IV in detail, the current 
implementation of BlueZIP uses a data chunk of 8 KB, which 
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corresponds to four 2 KB pages, because this setting achieves 
a good compression ratio with a small read penalty using a 
reasonable amount of hardware resources. 

Since the basic unit of data transfer between the file system 
and a storage device is usually 2-4 KB, there is a size mismatch 
problem with the data chunk size. In order to resolve this 
problem, the FTL stores the data from the file system 
temporarily in its internal write buffer. When the write buffer 
becomes full, the stored pages are sent to the flash memory. In 
BlueZIP, the write buffer size is set to 8,208 bytes, which is 
slightly larger than 8 KB, because the chunk header information 
of 16 bytes is added to the data to be written. This header 
contains metadata for the pages stored on the same data chunk 
so that the FTL uses for garbage collection and decompression. 
In addition, the sizes of the DMA buffer and the compression 
buffer are set to 10 KB, respectively, which is large enough to 
hold the entire data chunk during compression. 

 

B. Software Architecture of BlueZIP 

In this subsection, we explain CaFTL, the proposed 
compression-aware flash translation layer.  We first describe 
the address translation mechanism of CaFTL, which is devised 
to manage compressed data in NAND flash memory, and then 
discuss several issues related to garbage collection with 
CaFTL. Finally, we explain the selective compression scheme 
in detail. 

 
1) Address Translation 

CaFTL is based on a page-mapped FTL which maps a 
logical page into a physical page using a page mapping table. 
Unlike other page-mapped FTLs, CaFTL maintains a special 
data structure, called a data chunk table, which manages 
information about data chunks in flash memory. A data chunk 
table is composed of table entries, each of which is 8 bits: the 
first 3 bits are used for a valid page counter, the following 4 
bits represent the number of physical pages allocated to a data 
chunk, and the remaining 1 bit is used as a compression 
indicator which indicates whether the data chunk is 
compressed or not. The number of table entries is the same as 
the number of physical pages and the table entries that belong 
to the same data chunk have the same values. 

Fig. 3 shows an overall architecture of CaFTL with a page 
mapping table and a data chunk table. As mentioned before, 
CaFTL keeps the data of four pages in the write buffer and 
then flushes the stored pages to flash memory altogether, 
along with their header information. Header information 
includes the logical page addresses for four pages, which are 
used for decompression and garbage collection later. CaFTL 
updates the page mapping table so that each logical page entry 
indicates the first physical page address of the new data chunk. 
After the data have been written, CaFTL gets the number of 
physical pages actually used for writing the data chunk, 
updating the corresponding entries of the data chunk table. 
Note that a valid page counter is initially set to four because 
all the four pages are valid. 

 
Fig. 3. An overall organization of CaFTL. 

 
In order to read the data of a page from flash memory, 

CaFTL first finds the physical location of the data chunk 
containing the requested page by referring to the page 
mapping table. All the pages in the data chunk are then 
decompressed. CaFTL finds the requested logical page by 
looking at the header information and only the data of the 
requested page are transferred to the host. In addition, CaFTL 
maintains the read buffer to prevent repeated decompression 
for frequently accessed data chunks. CaFTL keeps four data 
chunks in the read buffer, which is managed by an LRU 
replacement policy. 

When a certain logical page is updated by new data, CaFTL 
decrements the valid page counter of the corresponding entry 
in the data chunk table by 1 because the corresponding data 
chunk contains no longer valid data for that page. The new 
page is written to the newly allocated data chunk, along with 
other pages which are requested together. 

Since CaFTL needs an additional data chunk table (whose 
size is increasing as the capacity of SSDs increases), it 
requires more memory space than the traditional page-mapped 
FTLs. However, we can mitigate the table size problem by 
adopting a demand-based mapping mechanism proposed in [7]. 
Furthermore, the data chunk table is smaller than the page 
mapping table because it requires only an 8-bit entry for each 
physical page. 

 
2) Garbage Collection 

CaFTL performs garbage collection to reclaim free space 
after all available free blocks are used up. Similar to a greedy 
policy used in existing FTLs, a block with the fewest valid 
pages is selected as a victim block. Once the victim block is 
chosen, CaFTL looks at the status of the data chunks in the 
victim block by referring to the data chunk table. If the data 
chunk has no valid pages (i.e., the valid page counter is 0), it 
is not necessary to move the pages in the data chunk because 
it contains only invalid pages. Therefore, CaFTL skips this 
data chunk and then sees the next one. If there is a data chunk 
with valid pages, CaFTL decompresses the data chunk and 
then stores only the valid pages on the temporary buffer. 
Similar to writing the data sent from the host, CaFTL evicts 
four valid pages to the new data chunk at once, updating the 
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page mapping table as well as the data chunk table. The victim 
block is erased and becomes a free block after moving all 
valid pages. 

 
3) Selective Compression 

The size of a data chunk compressed by BlueZIP can be 
larger than that of the original one because additional 
metadata (e.g., a chunk header and a compression flag) is 
included in a compressed data chunk. To prevent the size 
expansion problem, CaFTL exploits a selective compression 
function of BlueZIP. Since multimedia files, which were 
already highly compressed, are most likely candidates for the 
size expansion problem, CaFTL focuses on such data files 
when making selective compression decisions. For example, if 
CaFTL detects poorly compressed data streams in advance, it 
does not compress those data.  

To detect a data stream whose write pattern is sequential 
and whose compression ratio is low, CaFTL monitors a 
compression ratio of a data chunk whenever it is written to a 
flash memory. If a compressed data chunk is larger than the 
original one and the logical addresses of the four pages in the 
data chunk are sequential (e.g., the logical addresses are 100, 
101, 102, 103), this data chunk is regarded as a sequential data 
stream. CaFTL keeps the last logical address (e.g., 103) of the 
sequential data stream in a data structure, called a filtering 
table. The filtering table contains the information of each 
sequential data stream: a logical page address and a reference 
counter. If a new sequential data stream is observed and its 
first logical address is consecutive (e.g., 104) to the previous 
data stream in the filtering table, the previous data stream is 
replaced by the new one and its reference counter is increased 
by 1. Once a reference counter reaches to a certain threshold 
value (which is set to 4 in our implementation), CaFTL writes 
the following sequential data streams to the flash memory 
without compression. Note that a chunk header is not required 
for an uncompressed data chunk because a logical page 
address can be stored in a spare area of a page. In addition, a 
compression indicator of an uncompressed data chunk should 
be set to 0 so that decompression steps are bypassed when 
reading that chunk later. 

The current version of CaFTL keeps only 20 sequential data 
streams in the filtering table. If the filtering table becomes full, 
the data stream with the smallest filtering counter is removed 
and the new one is inserted into the filtering table. The 
memory requirement for keeping the filtering table is as small 
as several-ten bytes. 

V.  EXPERIMENTAL RESULTS 

A. Experimental Environment 

For the evaluation, we implemented the hardware and 
software modules of BlueZIP on the BlueSSD platform [4]. 
Fig. 4 shows a snapshot of the BlueSSD platform. As 
mentioned in Section III, BlueSSD is composed of two main 
components, the FPGA board and the custom flash board, 
called BlueFlash. The FPGA board is equipped with an FPGA 

fabric for implementing hardware logics and an embedded 
processor running at 400 MHz for executing software 
modules. 

The BlueFlash board holds four identical flash buses and 
each bus supports 8 flash chips. Each flash chip can store up 
to 1 GB of data with 4096 blocks. Each block is composed of 
128 2-KB pages. In the current implementation, four buses 
share a single compression/decompression module because 
our FPGA device is not large enough to implement a 
dedicated compression/decompression module for each flash 
bus. For a detailed analysis on the hardware resource 
utilization of BlueZIP, see Section IV-D. 

The hardware modules of BlueZIP were modeled and 
synthesized with a rule-based hardware design language [8]. 
CaFTL was implemented as a device driver in Linux 2.6.25.3. 
The block size of a Linux file system [9], which is the unit of 
data transferred from/to BlueSSD, was set to 2 KB so that its 
size is the same as that of a page. 

 

 
Fig. 4. A snapshot of an FPGA-based SSD prototype, BlueSSD. 

 

B. Effect of the Design Parameters of BlueZIP on the 
Compression Ratio 

We first investigated the effect of the dictionary table size 
and the data chunk size on the compression ratio while 
changing their sizes. For this evaluation, we have 
implemented a software simulator of BlueZIP’s compression 
and decompression modules because it allows us to easily 
evaluate the effect of the design parameters of BlueZIP on the 
compression ratio. 

Four types of data files with different compressibility were 
used for the evaluation: SENSOR, LINUX, DOCUMENT, 
and MP3. SENSOR is a set of sensor data files which were 
collected during a semiconductor fabrication process. These 
sensor data files contain a few text patterns which are repeated 
a large number of times, so it shows a very good compression 
ratio. LINUX is a subset of the Linux kernel 2.6.32 source 
files with a good compression ratio. DOCUMENT is a set of 
documents and image files with the file extensions (such 
as .ppt, .pdf, .doc, .bmp, and .jpeg.) DOCUMENT shows a 
medium compression ratio. MP3 is a set of MP3 files which 
were already highly compressed. 
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Fig. 5. The effect of different number of pages in the data chunk on 
compression ratios. 

 
Fig. 5 shows the effect of varying sizes of a data chunk 

from 1 page to 16 pages on the compression ratio. When the 
data chunk consists of a single page, there was no benefit of 
data compression because of the internal fragmentation 
problem. As the number of pages compressed together 
increases, however, the compression ratio is accordingly 
improved because the wasted space by internal fragmentation 
is reduced. The improvement in the compression ratio 
becomes negligible when the number of pages in the data 
chunk gets larger than four pages. Another important 
observation from Fig. 5 is that the compression ratio is higher 
than 1.0 for DOCUMENT and MP3 files, thus making 
compressed files bigger than original uncompressed files. 
Note that this size expansion problem can be resolved using 
the selective compression technique of BlueZIP, which will be 
discussed in the following subsection. 
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Fig. 6. The effect of different number of data entries in the directory on 
compression ratios. 

 
Fig. 6 shows the effect of varying sizes of a dictionary from 

64 to 4096 entries on the compression ratio. For the MP3 
benchmark, which exhibits quite low compressibility, the 
dictionary size does not have a significant effect on the 
compression ratio. This is because same patterns are rarely 
repeated in MP3 because it was already highly compressed. 
On the other hand, in the case of LINUX, as the number of 
dictionary entries increases, the overall compression ratio is 

improved because more useful patterns can be kept in the 
dictionary. SENSOR and DOCUMENT have a high degree of 
compressibility, but their compression ratios are the same 
regardless of the number of data entries because a small 
dictionary table is sufficient enough to maintain useful bit 
patterns. As shown in Fig. 6, even though the optimal number 
of data entries is somewhat different depending on the types 
of the input files, the compression ratio is saturated for all the 
benchmarks when the number of entries reaches 2048. 

Based on the results shown in Figs. 5 and 6, we have 
decided to use the dictionary table with 2048 data entries and 
the data chunk with four pages (i.e., 8 KB) because they 
exhibited a good compression ratio with a relatively small 
amount of hardware resource. 

 

C. Performance Evaluation 

In order to evaluate the performance and lifetime impact of 
BlueZIP, we have compared three configurations of our 
BlueSSD system: Baseline, BlueZIPalwz, and BlueZIPsel. 
Baseline is our baseline design, i.e., BlueSSD, without using 
BlueZIP. Both BlueZIPalwz and BlueZIPsel are BlueSSD 
combined with BlueZIP, but they differ in that BlueZIPsel 
supports selective compression, while BlueZIPalwz compresses 
all the data written to a flash chip. 
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Fig. 7. Write performance for different file types. 

 
Fig. 7 reports the comparison results for the write 

performance for the four test files when they are copied to 
BlueSSD. Even though selective compression was not used, 
BlueZIPalwz shows a fairly good performance for the test files 
with good compression ratios. BlueZIPalwz achieves about 50%, 
23%, and 17% higher performance over Baseline for 
SENSOR, LINUX, and DOCUMENT. However, for 
compressed files, the performance of BlueZIPalwz somewhat 
deteriorates. For MP3, BlueZIPalwz is about 20% slower than 
Baseline because the number of the pages written to flash 
memory is increased if data were already highly compressed. 
By avoiding useless compression, however, BlueZIPsel shows 
a better write speed over BlueZIPalwz, achieving almost the 
same performance as Baseline. 
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Fig. 8. The number of page written for different file types. 

 
Fig. 8 shows the number of pages written to flash memory 

when copying the test data files. BlueZIPsel writes 26% less 
data to flash memory over Baseline, thus improving the 
overall lifetime of SSD by the same amount. One interesting 
observation is that BlueZIPsel writes less amount of data over 
Baseline for MP3. This is because copying MP3 files 
generates many metadata updates for the file system whose 
compressed size is a lot smaller than its original size. In 
addition, the selective compression function of BlueZIP also 
helps to prevent the size expansion by eliminating useless data 
compression. 

 

 
Fig. 9. Read performance with GREP (left) and FIND (right). 

 
In Fig. 9, we have compared the read performance of 

BlueZIPsel while executing two read-intensive applications, 
GREP and FIND, on Linux kernel source files. GREP 
searches all the source files to find a matching string, whereas 
FIND searches for files in directories. Fig. 9 shows that 
BlueZIPsel improves the overall read performance by 20% on 
average. Although there is some decompression overhead 
during read operations, this result indicates that the reduction 
in the number of pages read sufficiently offsets the 
decompression overhead. 

We have evaluated the overall performance of BlueZIPsel 
using a more complicated benchmark program. We have 
selected the Postmark benchmark because it is widely used to 
evaluate the performance of storage devices. We modified 
Postmark so that it generates three different types of data: 
TEXTraw, TEXTweb, and IMAGEweb. TEXTraw is raw text data, 
TEXTweb is Web text data, and IMAGEweb is Web image data. 
Fig. 10 shows the results with Postmark. For TEXTraw and 

TEXTweb (whose compression ratios are relatively high), the 
performance improvements by both BlueZIPalwz and 
BlueZIPsel are significant. Even for IMAGEweb whose 
compression ratio is expected to be low, BlueZIPalwz and 
BlueZIPsel achieve a relatively good performance. Postmark 
is a metadata intensive benchmark; writes to metadata 
account for about 30% of all the write requests. By 
effectively reducing the amount of the metadata written, 
BlueZIPalwz and BlueZIPsel reduce about 14% of the data 
written to flash memory. Since Postmark generates many 
small-size transactions (whose sizes are less than 9 KB), the 
benefit of selective compression is negligible. 
 

 
Fig. 10. Execution time (left) and amount of data written (right) with 
Postmark benchmark. 

 

D. Hardware Utilization 

Finally, we compared the hardware resource usage of 
BlueZIP with that of the standalone BlueSSD. Table I shows 
the utilizations of hardware resources according to their types; 
Baseline indicates the standalone design without BlueZIP, and 
BlueZIP denotes the BlueSSD design with hardware 
compression and decompression modules. As shown in 
TABLE I, compared to our Baseline design, BlueZIP requires 
23% more Slices for the implementation of hardware 
compression/ decompression logics and consumes 33% more 
BRAMs, which are used for the compression/decompression 
buffer and the dictionary table. The utilizations of other 
resources including IOBs, GCLK, and DCMs are the same as 
the Baseline design. 
 

TABLE I 
HARDWARE RESOURCE UTILIZATION 

Type of Resource 
(# of Available Resources) 

# of Resources Used (%)
Baseline BlueZIP 

Slices (13696) 8180 (59%) 11234 (82%) 
- Flip Flops (27392) 8062 (29%) 9686 (35%) 

- 4 input LUTs (27392) 13740 (50%) 19175 (70%) 

Bonded IOBs (556) 111 (19%) 111 (19%) 

BRAMs (136) 76 (55%) 121 (88%) 

GCLK (16) 4 (25%) 4 (25%) 

DCMs (8) 1 (12%) 1 (12%) 

V.  CONCLUSION 

In this paper, we have proposed a hardware accelerated 
compression module, called BlueZIP, and a compression-
aware flash translation layer, called CaFTL. To show their 
feasibility and effectiveness in improving performance and 
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lifetime, we have implemented BlueZIP and CaFTL on an 
FPGA-based SSD prototype and have evaluated their 
performance with realistic benchmark programs. Our 
evaluation results show that BlueZIP supported by CaFTL can 
improve the lifetime of SSDs by 26% and improve read and 
write speed on average by 20% and 27%, respectively. 

BlueZIP can be improved in several directions. To 
eliminate the extra overhead induced by hardware 
compression, we will investigate a pipelined architecture for 
BlueZIP so that the compression/decompression process is 
completely overlapped with I/O operations. This also allows 
us to investigate several design alternatives in terms of 
compression ratio, hardware cost, and operation speed. 
Integrating hardware compression with data de-duplication is 
also one of our future works. Data compression is beneficial 
in removing repeated patterns inside a data chunk, whereas 
data de-duplication helps us to eliminate duplicate chunks in a 
very large volume of data [10]-[12]. By exploiting 
complementary aspects of these two techniques, we can 
further improve the performance and reliability of flash-based 
SSDs. 
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