
1732 IEEE Transactions on Consumer Electronics, Vol. 57, No. 4, November 2011

Contributed Paper
Manuscript received 09/09/11
Current version published 12/27/11
Electronic version published 12/27/11. 0098 3063/11/$20.00 © 2011 IEEE

Improving Performance and Lifetime of Solid-State Drives
Using Hardware-Accelerated Compression

 Sungjin Lee, Jihoon Park, Kermin Fleming, Arvind, Fellow, IEEE, and Jihong Kim, Member, IEEE

Abstract — The performance and lifetime of high-

performance solid-state drives (SSDs) can be improved by
data compression, which can reduce the amount of data
physically transferred from/to flash memory. In this paper,
we present our experience of building a high-performance
solid-state drive using a hardware accelerated compression
module called BlueZIP. In order to fully exploit the BlueZIP
module, we devise a compression-aware flash translation
layer (FTL), called CaFTL, which supports compression-
aware address mapping and garbage collection for BlueZIP.
For poorly compressed pages, CaFTL supports selective
compression so that unnecessary compression can be
avoided. We have implemented a complete SSD prototype
with BlueZIP on an FPGA-based custom SSD platform and
evaluated its effectiveness using realistic workloads. Our
evaluation results show that BlueZIP can increase the
lifetime of the SSD prototype by 26% as well as improve
read and write performance by 20% and 27%, respectively,
on average1.

Index Terms — Solid-State Drive, NAND Flash Memory,
Flash Translation Layer, Data Compression.

I. INTRODUCTION

NAND flash-based solid-state drives (SSDs) have
recently emerged as an attractive solution for consumer
devices and desktop systems thanks to the continued scale-
down of a NAND memory cell size combined with the use
of multi-level cell (MLC) technology. As the density of
flash memory cells increases, however, the performance and
reliability of flash memory may deteriorate significantly [1].
For example, single-level cell (SLC) flash memory
fabricated with the 34 nm process allows a flash block to
have 100,000 program/erase (P/E) cycles, whereas MLC
flash memory at the same 34 nm process supports only
5,000 P/E cycles per block. The performance of MLC flash
memory is also several times slower than that of SLC flash

1 This work was supported by the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MEST) (No. 20110020426,
No. R33-10095, and No. 2011-0020514). The ICT at Seoul National
University provided research facilities for this study.

Sungjin Lee, Jihoon Park, and Jihong Kim are with the School of
Computer Science and Engineering, Seoul National University, Gwanak-ro,
Gwanak-gu, Seoul 151-742, Korea (e-mail:{chamdoo, promar2,
jihong}@davinci.snu.ac.kr).

Kermin Fleming and Arvind are with the Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar
Street, Cambridge, MA 02139, USA (e-mail:{kfleming,
arvind}@csail.mit.edu).

memory. Moreover, as the semiconductor process is further
scaled down, it is expected that these problems will be
getting worse.

One of the promising approaches that can mitigate these
problems is to use hardware accelerated compression. Since
the lifetime of flash-based SSDs strongly depends on the
amount of data written to the SSDs, data compression,
which reduces the actual amount of data written to the SSDs,
can be an effective solution to improve the lifetime of the
SSDs. Furthermore, if compression can be supported by a
hardware acceleration unit, it can also improve the
performance of SSDs because a smaller amount of data are
physically transferred during I/O operations over
uncompressed reads and writes.

The idea of using data compression for data storage is not
new and has been widely studied. For example, many
existing file systems support software-based data
compression to expand the effective capacity of a storage
device. Although software-based compression approaches
can be useful in improving the lifetime of SSDs, they incur a
considerable compression/decompression overhead, thus the
overall SSD performance deteriorates significantly.
Therefore, software-based compression is usually employed
when the storage capacity is one of the most important
design goals.

 An obvious solution for the problem of software-based
compression is to use a special hardware accelerator.
Although some SSD companies are believed to employ
hardware-accelerated compression in their products, there is
no known literature that describes such SSDs in detail. For
example, recent investigations [2], [3], which discuss data
compression in flash memory, only focus on software-side
design and implementation issues. For the hardware design
issues, the existing techniques either assume a magic
compression hardware accelerator with no performance
penalty or do not present their design in detail.

In this paper, we describe our experience of building a
hardware compression module, called BlueZIP, which was
designed for flash-based SSDs. BlueZIP is implemented using
an FPGA-based SSD prototype called BlueSSD [4], thus
allowing us to evaluate the pros and cons of hardware
accelerated compression in real settings. Efficient software
support is another crucial issue in realizing the potential
benefit of data compression. To this end, we propose a
compression-aware flash translation layer, called CaFTL,
which provides support for compression-aware address
mapping and garbage collection. CaFTL also supports

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 11:35:59 UTC from IEEE Xplore. Restrictions apply.

S. Lee et al.: Improving Performance and Lifetime of Solid-State Drives Using Hardware-Accelerated Compression 1733

selective compression to avoid useless data compression for
the data which exhibit a low compression ratio. Our
evaluation results using various benchmark programs show
that BlueZIP lowers the amount of data written to flash
memory by 26%, improving the lifetime of SSDs by a similar
amount. Read and write speed of SSDs are also improved as
well by 20% and 27% on average, respectively.

The rest of this paper is organized as follows. In Section II,
we briefly review previous works related to data compression
in NAND flash memory. In Section III, we explain the
architecture of the proposed BlueZIP in detail, including its
hardware architecture and software architecture. Experimental
results are given in Section IV. Section V concludes with a
summary and directions for future work.

II. RELATED WORK

Several research groups have investigated using data
compression for NAND flash memory. Yim et al. [2]
proposed a flash compression layer to increase the effective
storage capacity. They focused on resolving the internal
fragmentation problem that occurs when the size of
compressed data is smaller than that of a single flash page
(which is a unit of read and write operations in NAND flash
memory). They mitigated this fragmentation problem by
introducing an internal packing scheme. Park et al. [3]
proposed another flash translation layer, called zFTL, which
employs data compression to improve the endurance of
NAND flash memory. zFTL takes account of compressed data
in both address mapping and garbage collection. Unlike our
proposed work, these two techniques are limited in their
contributions because they assumed that hardware
compression/decompression modules incur no performance
penalty for compressing and decompressing data. They also
did not explore important design issues such as
compression/decompression speed and the amount of the
required hardware resource. Furthermore, they have not
considered interactions between the compression software and
hardware layers for more optimized designs.

There also have been several studies for hardware-
accelerated compression, especially for the main memory
system. For example, X-Match is one of the representative
compression algorithms designed for main memory
compression [5]. X-Match achieves a reasonable compression
ratio for memory data, effectively increasing the memory
capacity. X-Match, however, is not suitable to be used for
secondary storage like solid-state drives because of its design
limitations. For example, X-Match is optimized to compress
small-size data such as several bytes of data (e.g., 4 bytes),
which is the unit of data transfer between CPU and main
memory. When X-Match is used for compressing large-size
data such as 8 KB pages in SSDs, it performs poorly. Unlike
X-Match, BlueZIP is designed to provide better
compressibility for a large amount of streaming data whose
size is several KBs and, therefore, more suitable for a
secondary storage device.

Fig. 1. An overall SSD architecture with BlueZIP.

III. BLUEZIP

Fig. 1 shows an overall organization of our prototype SSD
with BlueZIP. BlueZIP is implemented as one of the hardware
modules within BlueSSD [4], which is an open SSD platform
built on top of a general-purpose FPGA board combined with
a custom flash board, called BlueFlash. BlueSSD uses the
embedded processor included in the FPGA as a main SSD
controller, so as to execute our proposed FTL and the Linux
kernel. The flash controller is in charge of transferring the
data from/to the BlueFlash board and is composed of two
hardware modules: a DMA controller and a flash bus
controller. The DMA controller receives commands from the
processor and transfers data from/to DRAM through the
system bus. The flash bus controller performs several flash
operations, including read, write, and erase operations, and
moves the data from/to flash chips in the BlueFlash board.

The BlueZIP module is implemented between the DMA
controller and the flash bus controllers. The main role of
BlueZIP is to perform compression or decompression for the
data being transferred from the DMA controller or from the
flash bus controller, respectively. BlueZIP uses the LZRW3
algorithm [6], a variant of the LZ77 algorithm, because it
achieves a good compression ratio without high computational
burden. The LZRW3 algorithm has been significantly
modified in BlueZIP so that its hardware implementation
becomes efficient.

A. Hardware Architecture of BlueZIP

In this subsection, we describe the hardware architecture of
BlueZIP. We first explain the compression module of BlueZIP
in detail and then briefly introduce data decompression steps.
We also discuss the issues related to internal fragmentation
that occurs when data compression is used in NAND flash
memory [2] and then explain our approach to mitigate this
fragmentation problem.

1) Compression Module

Fig. 2 shows an overall architecture of the compression
module of BlueZIP, which is composed of four hardware
submodules: a shift register, a dictionary, a compression logic,
and a compression buffer. The shift register holds the data to
be tested for compression and the dictionary table contains

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 11:35:59 UTC from IEEE Xplore. Restrictions apply.

1734 IEEE Transactions on Consumer Electronics, Vol. 57, No. 4, November 2011

repeated patterns previously seen. The compression logic
converts the data in the shift register to symbols by referring
to the dictionary. The compressed data, a sequence of symbols,
are stored in the compression buffer and moved eventually to
a flash chip.

Fig. 2. An overall architecture of the compression module of BlueZIP.

BlueZIP fetches the data from the DMA buffer, which

keeps the entire data sent from the host, until the shift
register is fully filled. The compression logic creates a hash
value using the first 3 bytes of the data in the shift register,
which are used as a dictionary index for the dictionary table.
The compression logic then checks the data entry where the
dictionary index points. If the first 3 bytes of the
corresponding data entry is equivalent to those of the shift
register, we assume that we found a matching pattern from
the dictionary. When the compression logic finds a matching
data entry, it compares the remaining bytes in the shift
register with those in the data entry and finds the common
part of the data between the shift register and the data entry.
This common part is called a data segment. The compression
logic creates a symbol by combining the dictionary index
and the length of the data segment, along with a
compression flag whose value is ‘1’. The compression flag
indicates if the symbol represents compressed data or
uncompressed data. The symbol created is then written to
the compression buffer. Finally, the whole data segment is
discarded from the shift register, and the new data are
transferred to the shift register from the DMA buffer.

When we do not find a matching pattern from the dictionary,
we create a symbol only for the first byte of the data. A 9-bit
symbol is created by adding one-bit compression flag (whose
value is 0) to the first byte of the shift register. After the
symbol created is written to the compression buffer, a new
byte of the data from the DMA buffer is appended to the tail
of the shift register, discarding the first byte of the shift
register. Note that when a matching pattern is not available in
the dictionary, the old pattern in the data entry to which the
hash value points is replaced by the new pattern in the shift
register for supporting newly found patterns.

In our compression scheme, a single byte of the data may
be expanded into a 9-bit symbol (8 bits for the original data; 1
bit for a compression flag) if a single byte data cannot be
compressed. If a compression ratio is low, the amount of the

data actually written after compression can be bigger than the
original data. In order to solve this problem, BlueZIP supports
a selective compression function, which allows the FTL to
determine whether the requested data should be stored in a
compressed form or an uncompressed form. If the FTL
decides to write data without compression, the compression
filtering module of BlueZIP sends the requested data to the
flash bus controller directly, bypassing the compression
module.

The size of the shift register as well as the size of the
dictionary has a significant effect on a compression ratio. As
their sizes increase, a better compression ratio can be obtained
at the cost of using more hardware resources. Currently, the
shift register and the dictionary are set to 18 bytes and 36 KB
(= 211×18 bytes), respectively. This setting requires a small
amount of hardware resources, but provides a reasonable
compression ratio. In Section IV, we will analyze the effect of
the dictionary table size on a compression ratio in detail.

2) Decompression Module

Data decompression of BlueZIP is very similar to its data
compression except that the processing steps are reversed.
BlueZIP fetches the data from the flash bus controller and
decides if the data are compressed or not by checking a
compression flag. If the data are compressed, BlueZIP restores
the original data by using the dictionary index which indicates
the data entry in the dictionary, along with the length of the
data segment. In BlueZIP, the dictionary is reconstructed on-
the-fly at data decompression, so additional metadata for
decompression is not required.

3) Granularity of Data Compression

In order to take full advantage of the benefit of data
compression, BlueZIP should provide a meaningful
compression ratio so that a large number of page writes can be
eliminated. Unfortunately, NAND flash memory must be
programmed and be read in a unit of one page. Therefore, it is
difficult to avoid internal fragmentation that occurs when the
size of compressed data does not fit into a unit of a page. This
fragmentation problem wastes valuable storage capacity and,
more importantly, reduces the overall compression ratio. The
simple but effective way to mitigate such an internal
fragmentation problem is to increase the number of pages
compressed together, which is called a data chunk in this
paper.

Data compression with a large data chunk, however, has
two main drawbacks. First, a large data chunk hurts the read
performance. In order to read a page from flash memory, the
entire data chunk that holds the requested page should be
decompressed first. Second, data compression with a large
data chunk requires more hardware resources. As the size of a
data chunk increases, a hardware accelerator needs a larger
memory space because it keeps more data in the buffer
memory while performing data compression/decompression.
As will be discussed in Section IV in detail, the current
implementation of BlueZIP uses a data chunk of 8 KB, which

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 11:35:59 UTC from IEEE Xplore. Restrictions apply.

S. Lee et al.: Improving Performance and Lifetime of Solid-State Drives Using Hardware-Accelerated Compression 1735

corresponds to four 2 KB pages, because this setting achieves
a good compression ratio with a small read penalty using a
reasonable amount of hardware resources.

Since the basic unit of data transfer between the file system
and a storage device is usually 2-4 KB, there is a size mismatch
problem with the data chunk size. In order to resolve this
problem, the FTL stores the data from the file system
temporarily in its internal write buffer. When the write buffer
becomes full, the stored pages are sent to the flash memory. In
BlueZIP, the write buffer size is set to 8,208 bytes, which is
slightly larger than 8 KB, because the chunk header information
of 16 bytes is added to the data to be written. This header
contains metadata for the pages stored on the same data chunk
so that the FTL uses for garbage collection and decompression.
In addition, the sizes of the DMA buffer and the compression
buffer are set to 10 KB, respectively, which is large enough to
hold the entire data chunk during compression.

B. Software Architecture of BlueZIP

In this subsection, we explain CaFTL, the proposed
compression-aware flash translation layer. We first describe
the address translation mechanism of CaFTL, which is devised
to manage compressed data in NAND flash memory, and then
discuss several issues related to garbage collection with
CaFTL. Finally, we explain the selective compression scheme
in detail.

1) Address Translation

CaFTL is based on a page-mapped FTL which maps a
logical page into a physical page using a page mapping table.
Unlike other page-mapped FTLs, CaFTL maintains a special
data structure, called a data chunk table, which manages
information about data chunks in flash memory. A data chunk
table is composed of table entries, each of which is 8 bits: the
first 3 bits are used for a valid page counter, the following 4
bits represent the number of physical pages allocated to a data
chunk, and the remaining 1 bit is used as a compression
indicator which indicates whether the data chunk is
compressed or not. The number of table entries is the same as
the number of physical pages and the table entries that belong
to the same data chunk have the same values.

Fig. 3 shows an overall architecture of CaFTL with a page
mapping table and a data chunk table. As mentioned before,
CaFTL keeps the data of four pages in the write buffer and
then flushes the stored pages to flash memory altogether,
along with their header information. Header information
includes the logical page addresses for four pages, which are
used for decompression and garbage collection later. CaFTL
updates the page mapping table so that each logical page entry
indicates the first physical page address of the new data chunk.
After the data have been written, CaFTL gets the number of
physical pages actually used for writing the data chunk,
updating the corresponding entries of the data chunk table.
Note that a valid page counter is initially set to four because
all the four pages are valid.

Fig. 3. An overall organization of CaFTL.

In order to read the data of a page from flash memory,

CaFTL first finds the physical location of the data chunk
containing the requested page by referring to the page
mapping table. All the pages in the data chunk are then
decompressed. CaFTL finds the requested logical page by
looking at the header information and only the data of the
requested page are transferred to the host. In addition, CaFTL
maintains the read buffer to prevent repeated decompression
for frequently accessed data chunks. CaFTL keeps four data
chunks in the read buffer, which is managed by an LRU
replacement policy.

When a certain logical page is updated by new data, CaFTL
decrements the valid page counter of the corresponding entry
in the data chunk table by 1 because the corresponding data
chunk contains no longer valid data for that page. The new
page is written to the newly allocated data chunk, along with
other pages which are requested together.

Since CaFTL needs an additional data chunk table (whose
size is increasing as the capacity of SSDs increases), it
requires more memory space than the traditional page-mapped
FTLs. However, we can mitigate the table size problem by
adopting a demand-based mapping mechanism proposed in [7].
Furthermore, the data chunk table is smaller than the page
mapping table because it requires only an 8-bit entry for each
physical page.

2) Garbage Collection

CaFTL performs garbage collection to reclaim free space
after all available free blocks are used up. Similar to a greedy
policy used in existing FTLs, a block with the fewest valid
pages is selected as a victim block. Once the victim block is
chosen, CaFTL looks at the status of the data chunks in the
victim block by referring to the data chunk table. If the data
chunk has no valid pages (i.e., the valid page counter is 0), it
is not necessary to move the pages in the data chunk because
it contains only invalid pages. Therefore, CaFTL skips this
data chunk and then sees the next one. If there is a data chunk
with valid pages, CaFTL decompresses the data chunk and
then stores only the valid pages on the temporary buffer.
Similar to writing the data sent from the host, CaFTL evicts
four valid pages to the new data chunk at once, updating the

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 11:35:59 UTC from IEEE Xplore. Restrictions apply.

1736 IEEE Transactions on Consumer Electronics, Vol. 57, No. 4, November 2011

page mapping table as well as the data chunk table. The victim
block is erased and becomes a free block after moving all
valid pages.

3) Selective Compression

The size of a data chunk compressed by BlueZIP can be
larger than that of the original one because additional
metadata (e.g., a chunk header and a compression flag) is
included in a compressed data chunk. To prevent the size
expansion problem, CaFTL exploits a selective compression
function of BlueZIP. Since multimedia files, which were
already highly compressed, are most likely candidates for the
size expansion problem, CaFTL focuses on such data files
when making selective compression decisions. For example, if
CaFTL detects poorly compressed data streams in advance, it
does not compress those data.

To detect a data stream whose write pattern is sequential
and whose compression ratio is low, CaFTL monitors a
compression ratio of a data chunk whenever it is written to a
flash memory. If a compressed data chunk is larger than the
original one and the logical addresses of the four pages in the
data chunk are sequential (e.g., the logical addresses are 100,
101, 102, 103), this data chunk is regarded as a sequential data
stream. CaFTL keeps the last logical address (e.g., 103) of the
sequential data stream in a data structure, called a filtering
table. The filtering table contains the information of each
sequential data stream: a logical page address and a reference
counter. If a new sequential data stream is observed and its
first logical address is consecutive (e.g., 104) to the previous
data stream in the filtering table, the previous data stream is
replaced by the new one and its reference counter is increased
by 1. Once a reference counter reaches to a certain threshold
value (which is set to 4 in our implementation), CaFTL writes
the following sequential data streams to the flash memory
without compression. Note that a chunk header is not required
for an uncompressed data chunk because a logical page
address can be stored in a spare area of a page. In addition, a
compression indicator of an uncompressed data chunk should
be set to 0 so that decompression steps are bypassed when
reading that chunk later.

The current version of CaFTL keeps only 20 sequential data
streams in the filtering table. If the filtering table becomes full,
the data stream with the smallest filtering counter is removed
and the new one is inserted into the filtering table. The
memory requirement for keeping the filtering table is as small
as several-ten bytes.

V. EXPERIMENTAL RESULTS

A. Experimental Environment

For the evaluation, we implemented the hardware and
software modules of BlueZIP on the BlueSSD platform [4].
Fig. 4 shows a snapshot of the BlueSSD platform. As
mentioned in Section III, BlueSSD is composed of two main
components, the FPGA board and the custom flash board,
called BlueFlash. The FPGA board is equipped with an FPGA

fabric for implementing hardware logics and an embedded
processor running at 400 MHz for executing software
modules.

The BlueFlash board holds four identical flash buses and
each bus supports 8 flash chips. Each flash chip can store up
to 1 GB of data with 4096 blocks. Each block is composed of
128 2-KB pages. In the current implementation, four buses
share a single compression/decompression module because
our FPGA device is not large enough to implement a
dedicated compression/decompression module for each flash
bus. For a detailed analysis on the hardware resource
utilization of BlueZIP, see Section IV-D.

The hardware modules of BlueZIP were modeled and
synthesized with a rule-based hardware design language [8].
CaFTL was implemented as a device driver in Linux 2.6.25.3.
The block size of a Linux file system [9], which is the unit of
data transferred from/to BlueSSD, was set to 2 KB so that its
size is the same as that of a page.

Fig. 4. A snapshot of an FPGA-based SSD prototype, BlueSSD.

B. Effect of the Design Parameters of BlueZIP on the
Compression Ratio

We first investigated the effect of the dictionary table size
and the data chunk size on the compression ratio while
changing their sizes. For this evaluation, we have
implemented a software simulator of BlueZIP’s compression
and decompression modules because it allows us to easily
evaluate the effect of the design parameters of BlueZIP on the
compression ratio.

Four types of data files with different compressibility were
used for the evaluation: SENSOR, LINUX, DOCUMENT,
and MP3. SENSOR is a set of sensor data files which were
collected during a semiconductor fabrication process. These
sensor data files contain a few text patterns which are repeated
a large number of times, so it shows a very good compression
ratio. LINUX is a subset of the Linux kernel 2.6.32 source
files with a good compression ratio. DOCUMENT is a set of
documents and image files with the file extensions (such
as .ppt, .pdf, .doc, .bmp, and .jpeg.) DOCUMENT shows a
medium compression ratio. MP3 is a set of MP3 files which
were already highly compressed.

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 11:35:59 UTC from IEEE Xplore. Restrictions apply.

S. Lee et al.: Improving Performance and Lifetime of Solid-State Drives Using Hardware-Accelerated Compression 1737

0

0.5

1

1.5

2

2.5

1 page 2 pages 4 pages 8 pages 16 pages

Number of Pages per Data Chunk

C
om

pr
es

si
on

 R
at

io
SENSOR LINUX DOCUMENT MP3

Fig. 5. The effect of different number of pages in the data chunk on
compression ratios.

Fig. 5 shows the effect of varying sizes of a data chunk

from 1 page to 16 pages on the compression ratio. When the
data chunk consists of a single page, there was no benefit of
data compression because of the internal fragmentation
problem. As the number of pages compressed together
increases, however, the compression ratio is accordingly
improved because the wasted space by internal fragmentation
is reduced. The improvement in the compression ratio
becomes negligible when the number of pages in the data
chunk gets larger than four pages. Another important
observation from Fig. 5 is that the compression ratio is higher
than 1.0 for DOCUMENT and MP3 files, thus making
compressed files bigger than original uncompressed files.
Note that this size expansion problem can be resolved using
the selective compression technique of BlueZIP, which will be
discussed in the following subsection.

0

0.25

0.5

0.75

1

1.25

1.5

64 128 256 512 1024 2048 4096

Number of Data Entries per Dictionary

C
om

pr
es

si
on

 R
at

io

SENSOR LINUX DOCUMENT MP3

Fig. 6. The effect of different number of data entries in the directory on
compression ratios.

Fig. 6 shows the effect of varying sizes of a dictionary from

64 to 4096 entries on the compression ratio. For the MP3
benchmark, which exhibits quite low compressibility, the
dictionary size does not have a significant effect on the
compression ratio. This is because same patterns are rarely
repeated in MP3 because it was already highly compressed.
On the other hand, in the case of LINUX, as the number of
dictionary entries increases, the overall compression ratio is

improved because more useful patterns can be kept in the
dictionary. SENSOR and DOCUMENT have a high degree of
compressibility, but their compression ratios are the same
regardless of the number of data entries because a small
dictionary table is sufficient enough to maintain useful bit
patterns. As shown in Fig. 6, even though the optimal number
of data entries is somewhat different depending on the types
of the input files, the compression ratio is saturated for all the
benchmarks when the number of entries reaches 2048.

Based on the results shown in Figs. 5 and 6, we have
decided to use the dictionary table with 2048 data entries and
the data chunk with four pages (i.e., 8 KB) because they
exhibited a good compression ratio with a relatively small
amount of hardware resource.

C. Performance Evaluation

In order to evaluate the performance and lifetime impact of
BlueZIP, we have compared three configurations of our
BlueSSD system: Baseline, BlueZIPalwz, and BlueZIPsel.
Baseline is our baseline design, i.e., BlueSSD, without using
BlueZIP. Both BlueZIPalwz and BlueZIPsel are BlueSSD
combined with BlueZIP, but they differ in that BlueZIPsel
supports selective compression, while BlueZIPalwz compresses
all the data written to a flash chip.

0

7

14

21

28

35

SENSOR LINUX DOCUMENT MP3 AVERAGE

W
ri

te
 t

im
e

(s
ec

o
n

d
)

Baseline BlueZIPalwz BlueZIPsel

Fig. 7. Write performance for different file types.

Fig. 7 reports the comparison results for the write

performance for the four test files when they are copied to
BlueSSD. Even though selective compression was not used,
BlueZIPalwz shows a fairly good performance for the test files
with good compression ratios. BlueZIPalwz achieves about 50%,
23%, and 17% higher performance over Baseline for
SENSOR, LINUX, and DOCUMENT. However, for
compressed files, the performance of BlueZIPalwz somewhat
deteriorates. For MP3, BlueZIPalwz is about 20% slower than
Baseline because the number of the pages written to flash
memory is increased if data were already highly compressed.
By avoiding useless compression, however, BlueZIPsel shows
a better write speed over BlueZIPalwz, achieving almost the
same performance as Baseline.

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 11:35:59 UTC from IEEE Xplore. Restrictions apply.

1738 IEEE Transactions on Consumer Electronics, Vol. 57, No. 4, November 2011

0

10000

20000

30000

40000

50000

60000

SENSOR LINUX DOCUMENT MP3 AVERAGE

N
u

m
b

er
 o

f
p

ag
es

 w
ri

tt
en

Baseline BlueZIPalwz BlueZIPsel

Fig. 8. The number of page written for different file types.

Fig. 8 shows the number of pages written to flash memory

when copying the test data files. BlueZIPsel writes 26% less
data to flash memory over Baseline, thus improving the
overall lifetime of SSD by the same amount. One interesting
observation is that BlueZIPsel writes less amount of data over
Baseline for MP3. This is because copying MP3 files
generates many metadata updates for the file system whose
compressed size is a lot smaller than its original size. In
addition, the selective compression function of BlueZIP also
helps to prevent the size expansion by eliminating useless data
compression.

Fig. 9. Read performance with GREP (left) and FIND (right).

In Fig. 9, we have compared the read performance of

BlueZIPsel while executing two read-intensive applications,
GREP and FIND, on Linux kernel source files. GREP
searches all the source files to find a matching string, whereas
FIND searches for files in directories. Fig. 9 shows that
BlueZIPsel improves the overall read performance by 20% on
average. Although there is some decompression overhead
during read operations, this result indicates that the reduction
in the number of pages read sufficiently offsets the
decompression overhead.

We have evaluated the overall performance of BlueZIPsel
using a more complicated benchmark program. We have
selected the Postmark benchmark because it is widely used to
evaluate the performance of storage devices. We modified
Postmark so that it generates three different types of data:
TEXTraw, TEXTweb, and IMAGEweb. TEXTraw is raw text data,
TEXTweb is Web text data, and IMAGEweb is Web image data.
Fig. 10 shows the results with Postmark. For TEXTraw and

TEXTweb (whose compression ratios are relatively high), the
performance improvements by both BlueZIPalwz and
BlueZIPsel are significant. Even for IMAGEweb whose
compression ratio is expected to be low, BlueZIPalwz and
BlueZIPsel achieve a relatively good performance. Postmark
is a metadata intensive benchmark; writes to metadata
account for about 30% of all the write requests. By
effectively reducing the amount of the metadata written,
BlueZIPalwz and BlueZIPsel reduce about 14% of the data
written to flash memory. Since Postmark generates many
small-size transactions (whose sizes are less than 9 KB), the
benefit of selective compression is negligible.

Fig. 10. Execution time (left) and amount of data written (right) with
Postmark benchmark.

D. Hardware Utilization

Finally, we compared the hardware resource usage of
BlueZIP with that of the standalone BlueSSD. Table I shows
the utilizations of hardware resources according to their types;
Baseline indicates the standalone design without BlueZIP, and
BlueZIP denotes the BlueSSD design with hardware
compression and decompression modules. As shown in
TABLE I, compared to our Baseline design, BlueZIP requires
23% more Slices for the implementation of hardware
compression/ decompression logics and consumes 33% more
BRAMs, which are used for the compression/decompression
buffer and the dictionary table. The utilizations of other
resources including IOBs, GCLK, and DCMs are the same as
the Baseline design.

TABLE I
HARDWARE RESOURCE UTILIZATION

Type of Resource
(# of Available Resources)

of Resources Used (%)
Baseline BlueZIP

Slices (13696) 8180 (59%) 11234 (82%)
- Flip Flops (27392) 8062 (29%) 9686 (35%)

- 4 input LUTs (27392) 13740 (50%) 19175 (70%)

Bonded IOBs (556) 111 (19%) 111 (19%)

BRAMs (136) 76 (55%) 121 (88%)

GCLK (16) 4 (25%) 4 (25%)

DCMs (8) 1 (12%) 1 (12%)

V. CONCLUSION

In this paper, we have proposed a hardware accelerated
compression module, called BlueZIP, and a compression-
aware flash translation layer, called CaFTL. To show their
feasibility and effectiveness in improving performance and

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 11:35:59 UTC from IEEE Xplore. Restrictions apply.

S. Lee et al.: Improving Performance and Lifetime of Solid-State Drives Using Hardware-Accelerated Compression 1739

lifetime, we have implemented BlueZIP and CaFTL on an
FPGA-based SSD prototype and have evaluated their
performance with realistic benchmark programs. Our
evaluation results show that BlueZIP supported by CaFTL can
improve the lifetime of SSDs by 26% and improve read and
write speed on average by 20% and 27%, respectively.

BlueZIP can be improved in several directions. To
eliminate the extra overhead induced by hardware
compression, we will investigate a pipelined architecture for
BlueZIP so that the compression/decompression process is
completely overlapped with I/O operations. This also allows
us to investigate several design alternatives in terms of
compression ratio, hardware cost, and operation speed.
Integrating hardware compression with data de-duplication is
also one of our future works. Data compression is beneficial
in removing repeated patterns inside a data chunk, whereas
data de-duplication helps us to eliminate duplicate chunks in a
very large volume of data [10]-[12]. By exploiting
complementary aspects of these two techniques, we can
further improve the performance and reliability of flash-based
SSDs.

REFERENCES
[1] S. Saeki and M. Oishi, “SSDs challenge HDDs, but quality a

problem,” Nikkei Electronics Asia, Jun. 2009.
[2] K. Yim, H. Bahn, and K. Koh, “A flash compression layer for smart-

media card systems,” IEEE Transactions on Consumer Electronics,
vol. 50, no. 1, pp. 192-197, Feb. 2004.

[3] T. Park and J.-S. Kim, “Compression support for flash translation
layer,” in Proceedings of the International Workshop on Software
Support for Portable Storage, pp. 19-24, Oct. 2010.

[4] S. Lee, K. Fleming, J. Park, K. Ha, A. Caulfield, S. Swanson, Arvind,
and J. Kim, “BlueSSD: an open platform for cross-layer experiments
for NAND flash-based SSDs,” in Proceedings of the International
Workshop on Architectural Research Prototyping, Jun. 2010.

[5] M. Kjelso, M. Gooch, and S. Jones, “Design and performance of a
main memory hardware data compressor,” in Proceedings of the
EUROMICRO Conference, pp. 423-430, Sept. 1996.

[6] R. N. Williams, “An extremely fast ziv-lempel data compression
algorithm,” in Proceedings of the Data Compression Conference, pp.
362-371, Apr. 1991.

[7] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer
employing demand-based selective caching of page-level address
mappings,” in Proceedings of the Architectural Support for
Programming Languages and Operating Systems, pp. 229-240, Mar.
2009.

[8] R. Nikhil, “Bluespec system verilog: efficient, correct RTL from
high level specifications,” in Proceedings of the International
Conference on Formal Methods and Models for Co-Design, pp. 69-
70, Jun. 2004.

[9] R. Card, T. Ts'o, and S. Tweedie, “Design and implementation of the
second extended filesystem,” in Proceedings of the Dutch
International Symposium on Linux, Dec. 1994.

[10] F. Chen, T. Luo, and X. Zhang, “CAFTL: a content-aware flash
translation layer enhancing the lifespan of flash memory based solid
state drives,” in Proceedings of the USENIX Conference on File and
Storage Technologies, pp. 77-90, Feb. 2011.

[11] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,
“Leveraging value locality in optimizing NAND flash-based SSDs,”
in Proceedings of the 9th USENIX Conference on File and Storage
Technologies, pp. 91-103, Feb. 2011.

[12] Q. Yang and J. Ren, “I-CASH: intelligently coupled array of SSD
and HDD,” in Proceedings of the International Symposium on High
Performance Computer Architecture, pp. 278-289, Feb. 2011.

BIOGRAPHIES

Sungjin Lee received the B.E. degree in electrical
engineering from Korea University, Korea, in 2005, and
the M.E. degree in computer science and engineering
from Seoul National University, Korea, in 2007. He is
currently working toward the Ph.D. degree at Seoul
National University. From 1999 to 2002, he was a
software engineer at Bridgetec Co., Seoul, Korea. His

research interests include storage systems, operating system, and embedded
software.

Jihoon Park received the B.E. degree and the M.E.
degree in computer science and engineering from Seoul
National University, Korea, in 2008 and 2011,
respectively. His research interests include storage
systems, hardware design, and reconfigurable logic.

Kermin Fleming is a graduate student at the
Massachusetts Institute of Technology. He is a graduate
of Carnegie Mellon University (BS 06, MS 06). His
interests include hardware design, high-level synthesis,
and reconfigurable logic.

Arvind (M’74-SM’85-F’94) is the Johnson Professor of
Computer Science and Engineering at the Massachusetts
Institute of Technology and a member of CSAIL
(Computer Science and Artificial Intelligence
Laboratory). From 1974 to 1978 prior to coming to MIT,
he taught at the University of California, Irvine. Arvind
received his M.S. and Ph.D. in computer science from the

University of Minnesota in 1972 and 1973, respectively. He received his B.
Tech. in electrical engineering from the Indian Institute of Technology,
Kanpur, in 1969, and also taught there from 1977-78. Arvind's current
research focus is on enabling rapid development of embedded systems. Arvind
is a Fellow of both IEEE and ACM, and a member of the National Academy
of Engineering.

Jihong Kim (M’00) received the B.S. degree in computer
science and statistics from Seoul National University,
Seoul, Korea, in 1986, and the M.S. and Ph.D. degrees in
computer science and engineering from the University of
Washington, Seattle, WA, in 1988 and 1995,
respectively. Before joining SNU in 1997, he was a
Member of Technical Staff in the DSPS R&D Center of

Texas Instruments in Dallas, Texas. He is currently a Professor in the School
of Computer Science and Engineering, Seoul National University. His
research interests include embedded software, low-power systems, computer
architecture, and storage systems.

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 11:35:59 UTC from IEEE Xplore. Restrictions apply.

