
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

FastTrack: Foreground App-Aware I/O
Management for Improving User Experience

of Android Smartphones
Sangwook Shane Hahn, Seoul National University; Sungjin Lee, DGIST;

Inhyuk Yee, AIBrain Asia; Donguk Ryu, Samsung Electronics;
Jihong Kim, Seoul National University

https://www.usenix.org/conference/atc18/presentation/hahn

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

FastTrack: Foreground App-Aware I/O Management for
Improving User Experience of Android Smartphones

Sangwook Shane Hahn, Sungjin Lee†, Inhyuk Yee∗, Donguk Ryu‡, and Jihong Kim
Seoul National University, †DGIST, ∗AIBrain Asia, ‡Samsung Electronics

Abstract
The quality of user experience on a smartphone is di-
rectly affected by how fast a foreground app reacts to
user inputs. Although existing Android smartphones
properly differentiate a foreground app from background
apps for most system activities, one major exception is
the I/O service where I/O-priority inversions between
a foreground app and background apps are commonly
observed. In this paper, we investigate the I/O-priority
inversion problem on Android smartphones. From
our empirical study with real Android smartphones,
we observed that the existing techniques for mitigat-
ing I/O-priority inversions are not applicable for smart-
phones where frequently inverted I/O priorities should be
quickly corrected to avoid any user-perceived extra de-
lay. We also identified that most noticeable I/O-priority
inversions occur in the page cache and a flash storage
device. Based on the analysis results, we propose a
foreground app-aware I/O management scheme, called
FastTrack, that accelerates foreground I/O requests by
1) preempting background I/O requests in the entire I/O
stacks including the storage device and 2) preventing
foreground app’s data from being flushed from the page
cache. Our experimental results using a prototype Fast-
Track implementation on four smartphones show that a
foreground app can achieve the equivalent level of user-
perceived responsiveness regardless of the number of
background apps. Over the existing Android I/O im-
plementation, FastTrack can reduce the average user re-
sponse time by 94% when six I/O-intensive apps run as
background apps.

1 Introduction
As a highly interaction-oriented device, a smartphone
needs to react promptly without a noticeable delay to
user inputs. In order to minimize a user-perceived delay,
which directly affects the quality of user experience on
the smartphone, Android smartphones properly differen-
tiate a foreground (or FG) app from background (or BG)
apps for most system activities. For example, when CPU
cores are allocated, an FG app may be allowed to use
one or more CPU cores exclusively while BG apps must
share CPU cores with other apps [1, 2]. Such FG app-
centric resource management becomes more important
for modern Android smartphones because they run more
apps at the same time thanks to aggressive multitasking

support. As the number of concurrent BG apps increases,
an FG app may encounter more interference from BG
apps unless the FG app is managed with a higher priority
over the BG apps.

Unlike FG app-aware CPU management which has
been extensively investigated [3, 4, 5], I/O management
on smartphones has not actively considered the quality
of user experience issue in designing various I/O-related
techniques. FG app-oblivious I/O management was not
of a big concern for older smartphones where the number
of BG apps is quite limited because of a small DRAM
capacity (e.g., 512 MB) [6, 7, 8]. However, on mod-
ern high-end smartphones with a large number of CPU
cores and a large DRAM capacity (e.g., 8 GB) [9, 10, 11]
where the number of BG apps has significantly increased
(e.g., from one in Nexus S [12] to more than 8 in Galaxy
S8 [13]), FG I/O requests (or FG I/Os) are more likely to
be interfered with BG I/O requests (or BG I/Os). Unless
FG I/Os are treated with a higher priority over BG I/Os,
FG I/Os may have to wait for the completion of a BG
I/O. (That is, I/O-priority inversions occur.) In this pa-
per, we comprehensively treat the I/O-priority inversion
problem on Android smartphones including its impact on
user experience, its main causes and an efficient solution.

Our work is mainly motivated by our empirical obser-
vation that I/O-priority inversions between the FG I/Os
and the BG I/Os are quite common on Android smart-
phones. In particular, when an FG app needs a large
number of I/Os (e.g., when the app starts), such I/O-
priority inversions significantly degraded the response
time of the FG app. For example, when five BG apps
run at the same time, the app launch time of an FG app
can increase by up to four times over when no BG app
competes. This large increase in the app launch time of
the FG app was rather surprising because the Android
system is already designed to handle the FG app with a
higher priority. In order to understand why the response
time of a higher-priority FG app is affected by the num-
ber of BG apps, we have extensively analyzed the com-
plete I/O path of the Android/Linux I/O stack layers on
several smartphones using our custom I/O profiling tool,
IOPro [14]. From our analysis study, we found that I/O-
priority inversions in the page cache and the storage de-
vice were main causes of the increased response time of
an FG app. We also observed that the current flush policy

USENIX Association 2018 USENIX Annual Technical Conference 15

in the page cache, which does not distinguish whether a
victim page (to be flushed) is from an FG app or a BG
app, significantly impacted the FG app performance.

For frequent I/O-priority inversions on a smartphone,
the existing techniques such as [15, 16, 17, 18, 19] may
not be applicable because these techniques require a long
latency (from the smartphone’s viewpoint) to correct the
inverted I/O priorities. For example, [19] depends on the
priority inheritance protocol [20] to accelerate the com-
pletion of the current BG I/O before an FG I/O is started.
In our experiment, the FG I/O waited up to 117 ms for
the completion of the current BG I/O under the priority
inheritance protocol. Obviously, this is too long for a
smartphone where a delay of more than a few millisec-
onds is unacceptable [19]. Furthermore, the efficiency of
these existing techniques, which were not specifically de-
veloped for smartphones as a target system, is limited in
several aspects. For example, they do not fully exploit an
important hint such as the type of apps (e.g., foreground
or background) and do not take a holistic approach in op-
timizing the entire I/O stack layers including the storage
device. Therefore, a different approach is necessary for
resolving the I/O-priority inversion problem on smart-
phones. A solution should meet the fast response time
requirement and should better exploit the smartphone-
specific hints in a holistic I/O-path-aware fashion.

In this paper, we propose a new I/O management
scheme for Android smartphones, called FastTrack (or
FastT in short), which efficiently meets the above re-
quirements on resolving I/O-priority inversions on An-
droid smartphones. The key difference of FastTrack over
the existing techniques is that FastTrack takes a more di-
rect approach in fixing the I/O priority inversion problem
by preempting the current background activity through-
out the entire I/O stack layers. By stopping the current
background activity immediately, FastTrack can quickly
service the I/O request from an FG app. FastTrack also
modifies the flush policy of the page cache to be FG app-
aware. For example, when a victim page is selected for
the next flush, FastTrack first considers pages that be-
long to BG apps as victim candidates.

In order to evaluate the effectiveness of the proposed
scheme, we have implemented FastTrack on various
Android smartphones, including Nexus 5 [21], Nexus
6 [22], Galaxy S6 [23] and Pixel [24]. Our experimen-
tal results show that FastTrack can provide the equiv-
alent level of responsiveness to FG apps regardless of
the number of BG apps. For important I/O-intensive app
use cases (such as the app launch time, app switch time
and app loading time)1, compared over when no BG app
runs, FastTrack can limit an increase in the average re-
sponse time of an FG app within 27% even when six I/O-

1Since a user must wait for these use cases to complete, their re-
sponse times directly affect the smartphone user experience quality.

intensive BG apps run together. On the other hand, in the
default Android implementation, the average response
time can increase up to by 2,319%. Because of fore-
ground app-centric I/O management, FastTrack is very
effective in decreasing the average response time of an
FG app as well. For example, when six BG apps run to-
gether, FastTrack can reduce the response time of an FG
app by 94% over the default Android implementation.

The remainder of this paper is organized as follows.
In Section 2, we report the key results of our empirical
study on the impact of BG I/Os on user experience. Sec-
tion 3 describes the root causes of the I/O-priority inver-
sion problem on smartphones and summarizes the main
requirements that must be satisfied by a solution. A de-
tailed description of FastTrack is given in Section 4. Ex-
perimental results follow in Section 5, and related work
is summarized in Section 6. Finally, Section 7 concludes
with future work.

2 Impact of BG I/Os on User Experience
In this section, we empirically analyze how much FG app
performance is affected by BG I/Os. We also investigate
how often BG I/Os interfere with an FG app. Our em-
pirical study is carried out under various real-life smart-
phone usage scenarios with 10 different smartphones.

2.1 Evaluation Study Setup
For our study, we collected 10 Android smartphones2

(with a proper instrumentation function) from different
users who are all heavy users (almost always carrying
their smartphones with them). To avoid possible bias,
we have selected the smartphones from seven different
manufacturers. Each smartphone is equipped with 4 or
more cores and 3 GB or larger DRAM memory which is
large enough to actively support multitasking. All of the
smartphones also have the latest version of Android (ver-
sion 7.x) which supports enhanced multitasking features
(such as a split screen).

Like other active smartphone users, our study partic-
ipants used Chrome, Messenger, Camera, Gallery, and
Game as their main FG apps. As popular BG apps, cloud
backup apps such as Dropbox [25] and OneDrive [26]
were popular among the study participants. Furthermore,
all the participants enabled an option for an automatic
app update. The “background process limit” option was
set to “standard limit”, which is a default setting.

2.2 Response Time Analysis
In order to understand an impact of BG I/Os on user ex-
perience, we conducted a series of experiments on com-
mon smartphone usage cases when typical BG apps run.
We have measured the user-perceived response times

210 phones include Nexus 5 (N5), 6 (N6), 6P (6P), Z3 (Z3), Redmi
4X (4X), P9 (P9), Galaxy S6 (S6), Mi 5 (M5), Pixel (P1), and G5 (G5).

16 2018 USENIX Annual Technical Conference USENIX Association

0

2

4

6

8

10

N5 N6 Z3 4X P9 6P S6 M5 P1 G5

FG-Only FG+Update FG+Backup

0

2

4

6

8

N5 N6 Z3 4X P9 6P S6 M5 P1 G5

FG-Only FG+Update FG+Backup(sec) (sec)

0

2

4

6

N5 N6 Z3 4X P9 6P S6 M5 P1 G5

FG-Only FG+Update FG+Backup(sec)

(a) Gallery app launch time. (b) Camera app switch time. (c) Game app loading time.

Fig. 1: Impact of background I/Os on user experience.

of three usage cases where prompt reaction to user in-
puts are important – when (i) a new app is launched
by a user, (ii) one app is switched to another, and (iii)
a launched app is loading required contents. For BG
apps, we have selected two BG workloads: Update and
Backup. Update downloads and installs multiple apps
from the Android market (e.g., as in an auto app update),
and Backup uploads a large number of files to cloud stor-
age services (e.g., as in Dropbox). These workloads were
selected because they are known to generate substantial
BG I/Os in a periodic fashion3 Our background scenarios
are automatically invoked in background when a smart-
phone is connected to a fast network (e.g., Wi-Fi).

Scenario A – Launching Gallery App: Launching
an app requires to load a relatively large number of files,
including executables, libraries, and files. While an app
is being launched, a user has to wait until all the required
files are loaded from a storage device. In this paper, an
app launch refers to a cold start, where an app is launched
without any preloaded data. It should be noted that, as
the quality and complexity of mobile applications im-
prove, the amount of data to be loaded while launching
apps increases as well. In case of Gallery app [30], for
example, 25 image files, on average, must be preloaded
to complete the app’s initial display.

Fig. 1(a) depicts the launch time of Gallery on the 10
smartphones. Here, the launch time is defined to be the
time interval from when an app icon is touched by a user
to when all the components are displayed on the screen.
Even though there are differences depending on the hard-
ware performance, noticeable launch time degradations
are observed in all the smartphones when BG I/Os are
issued simultaneously. In N6 with an eMMC storage,
the launch times under two BG workloads, FG+Update
and FG+Backup, increase by 2.4 times and 1.6 times, re-
spectively, over a standalone launch (FG-only). Sim-
ilar trends are also observed even in smartphones with
faster mobile storage systems. In S6 with an UFS stor-
age that provides higher throughput, the launch times of

3Update is based on an observation that popular mobile apps (such
as Twitter) are typically updated once every week and the average
size of downloaded packages for an app update is about 110 MB [27,
28], and Backup is based on a report that a typical smartphone user
uploads more than 200 MB of files per day to the cloud storage [29].

FG+Update and FG+Backup increase by 2.6 times and
1.7 times, respectively.

Scenario B – Switching Camera App: Switching
from one app to another becomes a common feature in
smartphones supporting multitasking. Before moving to
a new app, a current app should be properly suspended.
In the Android platform, the app switch involves the
flushing of dirty pages in the page cache to persistent
storage, so as to create as many free pages as possible
for a new app. A user must wait for an old app to com-
plete flushing its dirty pages before a new app is acti-
vated. Therefore, a user may experience a long unpleas-
ant delay between app switches if BG I/Os interfere with
the flushing process in the page cache.

We examine the switch time of a Camera app [31]
when it switches to a home screen app. While the
Camera app is recording a video for 10 minutes, we
measure the time interval from when the home button
is pressed to when the home screen is displayed for the
next user interaction. Fig. 1(b) illustrates the switch time
of Camera in S6 – it is less than 1 second when no BG
I/Os are being issued, but it increases by 19.5 times un-
der heavy BG I/Os. In N6, the switch time also increases
by 11 times compared to when there are no BG I/Os.

Scenario C – Loading Game App: After app launch-
ing, some apps require additional file loading work be-
fore a user interacts with launched apps. One representa-
tive example is a Game app [32] that has to preload game
contents (e.g., stage maps and rendered images) depend-
ing on a user’s input after it completed the app launching
process. This loading process inevitably results in re-
sponse time delays from the perspective of end users.

In order to understand how much BG I/Os affect the
app loading time, we measure the time interval from
when the ‘story mode’ button on a Game app [32] is
touched by a user to when its loading process is fin-
ished. As expected, we observed that the app loading
time increases with BG I/Os in all the smartphones. We
also confirm that the app loading times tend to be longer
in smartphones with less memory over ones with larger
memory. For example, on N5 with 2 GB DRAM, the
loading time increases by 2.7 times under Update. The
loading time, however, increases about 2 times only on
P1 with 4 GB DRAM.

USENIX Association 2018 USENIX Annual Technical Conference 17

F
o

re
g

ro
u

n
d

C
o

ef
fi

ci
en

ts

0.0

0.2

0.4

0.6

0.8

1.0

App Launch App Switch App Loading

N5 N6 Z3 4X P9 6P S6 M5 P1 G5

Fig. 2: FG-BG interference analysis results.

2.3 FG-BG Interference Analysis
Although we confirmed that BG I/Os can significantly
degrade the quality of user experience of an FG app when
they conflict with FG I/Os, if BG I/Os were unlikely to
overlap with FG I/Os in practice, our response time anal-
ysis in Section 2.2 becomes less meaningful. For exam-
ple, if most BG I/Os occurred while a smartphone was
not actively used by a user, their actual impact on user
experience would be negligible, thus making our work
useless. In order to evaluate if such conflicts are really
happening in real-world settings, we built a simple I/O
utility4 which can tell how much BG I/Os were issued
while processing a given FG I/O req. If an FG I/O τ was
started at tstart and completed at t f inish , our utility com-
putes the ratio rτ of the total amount of I/Os from τ to the
total amount of I/Os in the interval [tstart , t f inish]. This ra-
tio, we call the foreground coefficient C f g, indicates the
proportion of FG I/Os over the total I/Os in [tstart , t f inish].
If C f g is high, it indicates that there is less interference
from BG I/Os. For example, if C f g is close to 1, few BG
I/Os interfere with the FG I/O.

Fig. 2 shows how much BG I/Os interfere with FG
apps on 10 smartphones. For each smartphone, we have
collected a month’s history of system call usage and
computed average foreground coefficients for three use
cases (explained in Section 2.2). Fig. 2 shows that a sig-
nificant portion of BG I/Os can interfere with user’s in-
teraction with FG apps. For example, in the app launch
scenario, FG I/Os account for only 42% of the total I/Os,
which can conflict with 58% of the total I/Os that are
requested from BG apps. Similarly, in the app switch
scenario and the app loading scenario, FG I/Os are re-
sponsible for 77% and 53% of the total I/O requests, re-
spectively. Although the BG I/O portion was reduced
over the app launch scenario, the BG I/O portion is still
large enough to affect the user experience of an FG app
in a significant fashion.

3 Root Causes of User-Perceived Delay
In this section, we analyze the I/O stack of the An-
droid platform to find root causes that are responsible

4Our monitoring tool is based on strace which is a popular profiling
utility for analyzing system calls [33]. Strace provides PIDs of pro-
cesses that generate I/Os, along with detailed information of relevant
I/O system calls. Using the collected information, we can distinguish
BG I/Os from FG IOs with their respective I/O traffic amounts.

(msec)3000200010000

FG-Only

FG+

Update

FG-Only

FG+Update

FG-Only

FG+Update

App

Launch

App

Switch

App

Loading

Page Cache Block Layer Storage Device

Fig. 3: A breakdown of foreground I/O execution time.

for rapidly increasing user-perceived response time along
with an increasing number of I/O-intensive BG apps. We
first review the overall architecture of the Android I/O
stack, giving a brief explanation of how apps access files
in storage media. Then, we explain three major bottle-
necks we found through the analysis.

3.1 Overview of Android I/O Stack
As in typical UNIX-like OSes, Android file I/Os (i.e.,
reads and writes on files) created by an app are delivered
to the kernel through system-call interfaces. The Linux
kernel checks if corresponding file data is already cached
in the page cache. If not, free pages available in the page
cache are allocated to individual file I/Os. If the file I/O
is for writes, user data is copied to the allocated pages
in the kernel. Before sending I/O commands to an un-
derlying block device, each file I/O is converted into a
set of block I/Os with designated logical block addresses
(LBAs). Block I/Os are then transferred to the block I/O
layer and are put into proper I/O scheduling queues, sync
or async queues, according to their types. I/O scheduling
algorithms (e.g., CFQ [34]) move ready-to-submit block
I/Os to a dispatch queue, which will be sent to the stor-
age device via the eMMC [35] or UFS [36] interface. If
the file I/O is for reads, data read from the storage device
is stored in the allocated pages, and the data is finally
copied to the user-space buffer.

In order to analyze the root causes of performance
degradation by BG I/Os, we have measured the execu-
tion time of FG I/Os using IOPro. IOPro is capable
of measuring the detailed elapsed times of I/O requests
across all the Android I/O stacks, including a page cache,
a block I/O layer, and a storage device. Fig. 3 shows
a breakdown of the I/O execution time observed in the
three usage scenarios used in Section 2. Because of the
space limit, only the results from S6 are displayed in
Fig. 3, but other smartphones also exhibit similar per-
formance trends. When there are no BG I/Os (denoted
by FG-Only in Fig. 3), the storage device is a major bot-
tleneck. This is a reasonable result because the storage
device is considered the slowest component in the I/O
stack hierarchy.

With BG apps running heavily (FG+Update in Fig. 3),
we observe that the execution times increased consider-

18 2018 USENIX Annual Technical Conference USENIX Association

FG I/O

Only

read()

FG I/O

BG I/O

write()

get_free_pages()
submit I/O

copy_to_user()

waiting

Time

Time

Time

read()

get_free_pages() copy_to_user()
submit I/O

get_free_pages()
submit I/O

get_free_pages() waiting copy_from_user()

get_free_pages()wait

get_free_pages()

submit I/O
wait copy_to_user()

waiting copy_from_user()

waiting copy_to_user()

waiting

1 2 3

4

5

(a) Foreground app only.

(b) Both foreground app and background app.

Fig. 4: Impact of lock contention on the I/O latency of the foreground app.

ably across all the layers. In particular, the times spent
by the page cache layer have increased by 12 times, on
average. For example, in Fig. 3, the portions of the page
cache in FG-Only were negligible, but these rapidly in-
creased in FG+Update to 32%-51% of the total execution
times. While the relative portion of the time spent by the
storage device has decreased, the total execution time
spent by the storage device has significantly increased.
For example, in the case of the app switch scenario, the
execution time on the storage device has increased by 5
times. One surprising result in our study was that the
impact of the block I/O layer on performance was rather
negligible compared with the other two layers.

In the following three subsections, we investigate what
happens inside the kernel I/O stacks when BG I/Os are
heavily issued. Particularly, we focus on analyzing in-
ternal I/O activities at the page cache and the storage de-
vice layers because they are the main contributors to the
increase of the execution times.

3.2 Root Cause 1: Page Allocation
From our performance bottleneck study, we found that
lock contentions in the page cache layer are responsible
for many I/O-priority inversions we have observed. As
the first and major root cause of a performance degrada-
tion of an FG app under BG apps, we explain the impact
of the page allocation module on user experience. When
a new I/O request arrives at the kernel, free pages should
be assigned first to the I/O request. When new free pages
are necessary for serving the incoming I/O request, a
free-page allocation module first acquires a global lock,
page lock, for the exclusive access of the page cache
during the page reclamation process [37] which is non-
preemptive [38]. Acquiring free pages is mostly done
quickly. However, if there are not sufficient free pages
available, it takes a rather long time (e.g., more than 200
ms [19]) to create free pages by evicting dirty pages.
Evicting dirty pages require extra writes to the storage
device. If FG I/Os are blocked by BG apps that need the
free page reclamation process, an FG app has to wait for
BG I/Os to finish, thus causing an I/O-priority inversion
between the FG app and the BG apps.

Fig. 4(a) illustrates an example where an FG app F
reads a photo file of 256 KB size from storage media by
calling a read() system call. We compare two different

cases: 1) when F runs alone without any BG apps and 2)
when F runs together with a BG app B that writes a large
file to the storage device. Without BG apps, the FG app
can quickly get free pages from the page cache (by call-
ing alloc pages() 1). Since the maximum allocation
unit of free pages is limited to 128 KB [39], the kernel
calls alloc pages() twice, each of which gets 128 KB
free pages. After calling each alloc pages(), the ker-
nel sends a read I/O command to the storage device (2),
which transfers file contents from the storage to the al-
located pages. Finally, data kept in the kernel pages are
copied to a user-space buffer in the unit of 128 KB (by
calling copy to user() 3).

Suppose that the BG app calls the write() system
call to write data just before read() is invoked by the
FG app. The page lock is grabbed by the BG app first, so
the FG app has to wait until it releases the lock (4). This
could be quite long if dirty page evictions are involved
while assigning free pages to the BG app. After the page
lock is released by the BG app, the FG app is able to ac-
quire the lock, allocates free pages for reads, and then
releases the lock. Then, it issues a read I/O command
to the device. Copying data from the user space to the
kernel space (copy from user()) also requires holding
the same global lock of the page cache (5). As depicted
in 4(b), if the BG app has already acquired the global
lock, the FG app has to wait again for the lock to be re-
leased, which increases additional user-perceived delays.

Some might argue that the eviction of dirty pages in
the middle of calling alloc pages() would rarely oc-
cur. In our observation, however, when write-dominant
BG apps run (e.g., Update), many dirty pages are cre-
ated in the page cache and available free pages quickly
run out. If an FG app requests I/Os in such situations,
frequent evictions of dirty pages are inevitable.

3.3 Root Cause 2: Page Replacement
Our second root cause comes from a somewhat surpris-
ing source. As discussed in Section 3.2, the perfor-
mance degradation of an FG app from the lock con-
tention mostly occurs when many dirty pages are created
in the page cache. When BG apps are read-dominant,
such performance degradation is difficult to occur be-
cause few dirty pages may exist in the page cache. For
example, in 4 of Fig. 4(a), if reclaimed pages were

USENIX Association 2018 USENIX Annual Technical Conference 19

FG I/O

Only

read(A)

copy_to_user()
Time

1

2

3

read(A)

FG I/O

read(A)

copy_to_user()
Time

get_free_pages()
submit I/O

read(A)

Page

Cache

TimeA A

BG I/O
read(B1) read(B2)

A A

B1 B1

B2 B2

B1 B1

4

(a) A foreground app only.

(b) A foreground app with a background app.

Fig. 5: Impact of page replacement.

clean, no writes to the storage device would be needed.
Unlike our reasoning about read-dominant BG apps, our
experiments revealed an interesting result that even read-
dominant BG apps can often interfere with an FG app.

Although it was not straightforward to understand why
such unexpected performance degradation occurs, we
identified the page replacement policy in the page cache
as the main cause. The existing Linux page replacement
policy in the page cache works in an FG app-oblivious
fashion. That is, the Linux kernel prefers choosing a
clean page as a victim because of its cheap replacement
cost regardless of whether the owner of the victim page
is an FG app or a BG app. Suppose that BG apps want to
read a large amount of data from the storage and they
need to get more free pages by evicting existing ones
from the page cache. In this situation, the Linux kernel
often selects clean pages of an FG app even though those
clean pages are soon to be accessed. Although choosing
a clean page as a victim page is reasonable from mini-
mizing the eviction cost, it is a bad decision for the FG
app because a large page cache miss penalty can signifi-
cantly increase the FG app response time.

Fig. 5 shows a concrete example of how a read-
dominant BG app negatively affects an FG app. Here,
the FG app F is assumed to read a file A twice by call-
ing read(). Again, we compare two different cases: 1)
when F solely runs and 2) when F runs together with a
BG app which read a large file B from the storage de-
vice. Without BG apps, the FG app can quickly finish
the second read() by reading the file A from the page
cache (1). However, when the FG and BG apps run si-
multaneously, some pages of the file A may be evicted
from the page cache (2) to create a room for the large
file B. After the completion of BG reads, when the FG
app tries to read the file A again, free pages should be
allocated (3) and the previously-evicted pages should
be read from the storage device again (4). Even worse,
from our investigations on real-life app usage scenarios,
we observed that many FG apps exhibit high temporal
locality, repeatedly referencing the same files. For such
an FG app, the existing page cache replacement policy
can significantly degrade the user experience by evicting
performance-critical hot pages of the FG app.

0

100

200

0 0.5 1 1.5 2 2.5 3 3.5 4

FG I/O

0

100

200

0 0.5 1 1.5 2 2.5 3 3.5 4

FG I/O BG I/O

(sec)

(sec)T
h

ro
u

g
h
p
u

t
(M

B
/s

ec
)

T
h

ro
u

g
h
p
u

t
(M

B
/s

ec
)

FG App Switch

(a) I/O throughput of FG I/Os on UFS.

(b) I/O throughput of FG I/Os and BG I/Os on UFS.

Fig. 6: I/O priority inversions in flash storage device.

3.4 Root Cause 3: Device I/O Scheduling
After our bottleneck study on the page cache layer, we in-
vestigated the block layer as a next candidate for the I/O
priority inversion problem. We analyzed how the block
layer processes I/O requests from when the I/O requests
are put into the I/O scheduler queue to when an inter-
rupt handler receives signals notifying the completion of
the requests in the storage device. Our investigation re-
vealed that the I/O priority inversion problem occurred
in the storage device rather than in the block layer.

Once the storage device gets I/Os from a block de-
vice driver, it processes them according to its own I/O
scheduling algorithm. The storage device generally gives
a higher priority to reads than writes because reads have
a higher impact on user-perceived response time. For
the same type of I/O requests, the storage device process
them in an FIFO manner with no preference. Although
this generic scheduling policy works reasonably well for
equal-priority I/O requests, it causes I/O-priority inver-
sions very frequently because the scheduling policy in-
side the storage device is not aware of the priority of an
I/O request. For example, if FG writes and BG reads are
sent to the storage device, the FG writes would be de-
layed until all the BG reads complete.

Fig. 6 illustrates the negative impact of a priority-
unaware I/O scheduler inside a storage system on the
throughput of FG I/Os. It plots the throughputs of FG
I/Os and BG I/Os in the app switch scenario, where an
FG app writes a large number of files, while huge files
are being read in background. Note that the I/O through-
puts were measured at the block device driver in order
to device-level performance. Unlike the FG-Only case
shown in Fig. 6(a), a significant degradation of the FG
I/O throughput is observed in Fig. 6(b) when FG writes
and BG reads are mixed inside the storage system. The
app switch scenario, which was completed in 0.45 sec-
onds without BG I/Os, took 3.55 seconds to finish. Our
additional experiments showed that the I/O-priority in-
version problem within the storage device occurs very
frequently whenever FG writes are mixed with BG reads
and its impact on an FG app is very serious.

20 2018 USENIX Annual Technical Conference USENIX Association

Page Cache

Send FG App’s UID

Block Layer

Free Page Pool

2

Send FG I/O LBAs

Get FG BIOs

Get Free Pages for FG I/O

App Status Detector

3

6

Android Platform

Activity Stack
1

Get FG App’s UID

FG AppApplications BG Apps

BG I/Os

Preemption

BG BIOs

PreemptionI/O Scheduler I/O Dispatcher

7Queue FG BIOs

Priority-aware

Flash Storage FG cmds

Preemption

Detect FG cmds

FG BIOs

BG cmds

FG I/O

Prevent
Flushing

4

5

8

Send FG Pages info.

Dispatch Queue

FG PagesBG Pages

Page Reclaimer

Pages

NAND Flash Memory

Page Allocator

Device I/O Scheduler

Fig. 7: An overall architecture of FastTrack.

4 Design and Implementation of FastTrack

As explained in the previous section, high-priority FG
I/Os are unintentionally delayed by low-priority BG I/Os
for various reasons across the entire I/O stack. One of the
most commonly used solutions to resolve the I/O-priority
inversion problem is to use the priority inheritance pro-
tocol that raises a priority of BG I/Os. The priority in-
heritance, however, is not effective in our cases – it still
requires an FG app to wait for BG I/Os to finish, creating
long delays to latency-sensitive smartphone users.

An ideal solution to resolve the problem is to create
a vertically-integrated fast I/O path which is dedicated
to serving FG I/Os across the entire I/O stack, includ-
ing a page cache, a block layer, and a storage device. In
other words, if it is possible to quickly preempt BG I/Os
upon the arrival of FG I/Os and to deliver them directly
to the storage device with minimal interference by I/O
stack layers, it would be possible to provide the equiva-
lent level of user-perceived responsiveness as when there
is no BG I/O. Key technical challenges here are (1) how
to identify FG I/Os from BG I/Os inside the kernel, (2)
how to preempt BG I/Os immediately, and (3) how to
prevent potential side effects that could occur when cre-
ating such a new I/O path.

Keeping these technical challenges in mind, we design
the app status-aware I/O management, FastTrack, with
five modules as illustrated in Fig. 7. The app status de-
tector obtains the information of the current FG app by
monitoring the activity stacks of the Android platform
(1) and forwards it to the page allocator (2). Using
this, the page allocator is able to identify I/O requests
from the FG app, suspending the currently executing BG
I/O jobs. The page allocator then grabs a global lock of
the page cache, preferentially assigning free pages to FG
I/Os, regardless of their arrival time (3). Until the page
allocator releases the lock, BG I/Os are postponed.

If there are not enough free pages to handle I/O re-
quests, the page reclaimer evicts kernel pages that be-
long to BG I/Os as victims, preventing FG pages from
being flushed from the page cache (4). After acquiring
all the free pages required, the page reclaimer builds up
block I/Os for FG I/Os (FG BIOs) with designated LBAs,
putting them into I/O scheduler’s queue in the block layer
(5). Upon the arrival of FG BIOs, the I/O dispatcher
suspends servicing BG BIOs by limiting I/O queueing
and then immediately delivers FG BIOs to the dispatch
queue (6 and 7). When FG BIOs are converted to FG
commands (FG cmds) for the storage device, the I/O dis-
patcher tags an FG I/O flag so that the device I/O sched-
uler suspends the BG I/O execution (8), and FG cmds
can be processed immediately in the storage device.

4.1 App Status Detector
In order to identify an FG app among all the apps avail-
able in the system, the app status detector inquires of
the Android activity manager holding all of the activities
initiated by a user. Whenever a user inputs a command
to a phone by touching a screen or an icon, the Android
platform creates a new activity, which is a sort of job
corresponding to user’s command, and puts it into an ac-
tivity stack in the Android activity manager. Since the
top activity on the stack points to the current interactive
app with a user (i.e., an FG app), the FG app information
in the system can be easily retrieved.

All of the Android apps have its own unique ID num-
ber, called UID, which is assigned when an app was in-
stalled in the system. An UID number is different from
Linux’s process ID (PID). Thus, our next step is to find
a list of the Linux processes connected to the FG app.
A list in question can be obtained by examining all the
processes in Linux’s process tree. However, such an ex-
haustive search on the process tree takes a relatively long
time. Therefore, the app status detector maintains an
UID-indexed table that is updated whenever a new pro-
cess or thread is created or terminated. Then, using UID
as a key, the app status detector quickly retrieves a list
of FG app’s processes.

Whenever the top activity changes, the app status de-
tector sends an UID of the new FG app, along with PIDs
and TIDs of related Linux processes, to the Linux kernel
via the sysfs interface. By doing this, app status de-
tector can keep track of the currently executing FG app.

4.2 Page Allocator
The page allocator is designed to preferentially allocate
kernel pages to I/O requests from an FG app by suspend-
ing outstanding BG I/Os. Fig. 8 shows how the page
allocator works using the same example in Fig. 4, where
the FG app generates read requests to the kernel just af-
ter the BG app issued write requests. The page alloca-
tor sees if the I/O request is from the FG app or not by

USENIX Association 2018 USENIX Annual Technical Conference 21

FG I/O

BG I/O

write()

Time

read()

get_free_pages()
submit I/O

copy..get_free_pages()
submit I/O

Time
waiting get_free_pages waiting copy_from_user wait

1
Detect

2

Preempt
3

Resume

Page Allocator

Fig. 8: Preemption of background I/Os.

comparing its UID, PIDs, and TIDs with the ones that it
previously got from the app status detector (1). If it is
from the FG app, the page allocator forces BG I/Os to
release a global lock of the page cache just after getting
a page currently being requested (2). After allocating
desired pages to the FG I/Os, the page allocator resumes
the preempted BG I/Os (3). At the same time, the ker-
nel issues FG BIOs to fill up the allocated pages with
data read from storage media. In a similar way, the page
allocator suspends and resumes data copy operations of
BG I/Os between the user and kernel space.

In order to support the prompt preemption and re-
sumption of BG I/Os, we modified the major ker-
nel functions relevant to the page cache, includ-
ing alloc pages(), do generic file read(), and
generic perform write(). These functions are di-
vided into several execution segments. At the end of each
segment, the page allocator checks if there are waiting
FG I/Os. If so, the page allocator promptly suspends BG
I/Os, unlocks the page-cache lock, and yields the CPU
for the FG I/Os. After serving FG I/Os, the suspended
BG I/Os restart at the point where they were suspended.

While conceptually simple, the implementation of
the preemptive page cache raises two technical issues.
Firstly, giving the highest favor to FG I/Os does not guar-
antee the improved response time all the time, and, in
the worst case, it may result in serious response time
degradation or even application deadlocks. Imagine an
application that downloads files from the network and
performs certain operations on the download files. The
application model of Android requires an app to of-
fload such a typical task to a built-in process that runs
as a background service. In case of a file download,
a network service process performs downloading files
in background on behalf of a user app. If I/O requests
from the network service process are preempted for FG
I/Os, the execution of the FG app that initiates the file
download would be delayed for a long time. Fortunately,
the Android system does not allow such dependency be-
tween conventional user apps (e.g., game and camera
apps) [40]. To avoid the self-harming preemption men-
tioned above, therefore, it is only necessary to prevent
the preemption for BG I/Os from service processes. To
do this, the page allocator checks if BG I/Os are issued
by services or not and excludes them from the preemp-
tion if they are from service processes. This I/O filtering

1

2

FG I/O

read(A)

copy_to_user()
Time

read(A)

Page

Cache

TimeA A

BG I/O
read(B1) read(B2)

A A

B1 B1

A A

B2 B2

Page Reclaimer

Fig. 9: Prevention of foreground page evictions.

can be done by checking UID because the Android sys-
tem assigns predefined UIDs to service processes, giving
UIDs ranging from 10,000 to 19,999 to user apps [41].

Secondly, performing the preemption at the page
cache level is not always possible. Some pieces of the
kernel code must run in a special context, called an
atomic context [42], which does not allow a CPU to go
into sleep. Representative examples are interrupt han-
dlers and critical section codes wrapped by spinlocks.
The page allocator modifies the page cache functions
that are also invoked by other parts of the kernel for var-
ious purposes. Thus, the page allocator should disable
the preemption if it is called by a caller running in the
atomic context. It is straightforward to know whether the
page allocation is requested inside the atomic context. In
the Linux kernel, a caller function should let the mem-
ory allocator know which type of contexts it runs now
as an argument (e.g., GFP ATOMIC). The page allocator
refers this information and prevents the preemption if the
allocation is requested inside the atomic context.

4.3 Page Reclaimer
In addition to preempting BG I/Os to accelerate page al-
location for FG I/Os, the page reclaimer improves the
performance of FG apps by preventing the eviction of
kernel pages belonging to the FG apps.

Fig. 9 illustrates how the page reclaimer operates us-
ing the same example in Fig. 5, where the FG app at-
tempts to read the file A twice, while the BG app is heav-
ily reading the large file B. In Fig. 5, the second read to
the file A is not hit by the page cache since it was chosen
as a victim and was evicted from the page cache (2 in
Fig. 5). As explained earlier, this is due to the kernel’s
page replacement that evicts clean pages first, regardless
of the status of an app. The page reclaimer prevents such
a problem by adopting new replacement priorities for
victim selection: BG clean pages (highest) > BG dirty
pages (high) > FG clean pages (low) > FG dirty pages
(lowest). With the new policy, clean pages belonging to
BG apps are preferentially evicted when there is insuf-
ficient memory. In Fig. 9, the pages labeled by B1 are
evicted for B1, even though the pages for the file A were
least recently referenced (1 in Fig. 9).

Keeping FG pages in the page cache wouldn’t be ef-
fective if an FG app has low temporal locality. In the
worst case, it would degrade the performance of BG apps
without any performance improvement on an FG app.
According to the mobile app workload study [43], how-

22 2018 USENIX Annual Technical Conference USENIX Association

ever, the majority of the apps have high degrees of data
locality. Thus, the negative effects of the page reclaimer
are expected to be minimal in smartphone usages.

4.4 I/O Dispatcher
The primary goal of FastTrack is to create a fast I/O path
for FG I/Os in the entire kernel layer. To this end, it
is also required to enhance the block I/O layer, together
with the page cache layer. Once block I/Os are delivered
to the block layer from the page cache, they are put into
a sync queue or an async queue in the I/O scheduler ac-
cording to their types. To accelerate FG BIOs, the I/O
dispatcher looks for FG BIOs in both queues and moves
them to the dispatch queue immediately.

Depending on the type of a queue, the I/O dispatcher
has to take different strategies to find FG BIOs. FG BIOs
can be easily found in the sync queue using the FG app’s
PID number delivered by the app status detector. In the
case of async I/Os, however, the PID number of all async
I/Os is the same as the PID of the kworker kthread which
delivers async BIOs to the block layer on behalf of FG
processes. Since the PID number is useless to find async
FG BIOs, the I/O dispatcher uses LBAs as keys to fetch
FG BIOs from the async queue.

Finally, whenever a new BIO enters the sync/async
queues, the I/O dispatcher prevalidates whether it is FG
BIO, then directly sends FG BIO to the dispatch queue
regardless of its priority in sync/async queues.

4.5 Device I/O Scheduler
In order for FastTrack to achieve its maximum bene-
fit, a storage device, which is at the lowest layer in the
I/O stack, needs to be enhanced as well. According to
[44, 45, 46], modern flash storage maintains its own in-
ternal queue, but is unaware of the status of applications
issuing I/Os. To make a storage device FG I/O-aware,
we modify an SCSI command set so that it carries an
additional flag in a reserved opcode [47] that specifies
whether I/O requests are issued by FG apps or not. This
flag is used as a hint for a device-level I/O scheduler to
decide the execution order of I/O requests staying in the
internal I/O queue. In our current design, we assign the
highest priority to FG reads, followed by FG writes and
BG reads. BG writes are assigned to the lowest priority.

5 Experimental Results
In order to quantitatively evaluate the effect of FastT, we
implemented the FastT modules in the Android 7.1.1 and
the Linux kernel 3.10.61. Four smartphones, Nexus 5
(N5), Nexus 6 (N6), Galaxy S6 (S6) and Pixel (P1) were
used for our evaluation. N5 and N6 use eMMC-based
storage devices while S6 and P1 employ UFS-based stor-
age devices. (Note that UFS supports 3 times higher
throughput over eMMC.) All the smartphones were con-
nected to the Internet through a 5-GHz Wi-Fi.

We have chosen two background usage scenarios:
Update for a write-dominant workload and Backup for a
read-dominant workload. The Update scenario updated
Hearthstone game [48] downloaded from Play Store,
whose size was about 1.5 GB. The Backup scenario up-
loaded 1 GB of data files to cloud storage.

While running BG apps, we executed three FG apps,
Gallery (app launch), Camera (app switch), and Game

(app loading) discussed in Section 2.2. Gallery was a
read-dominant workload, Camera was a write-dominant
workload, and Game was a mixed workload. In order
to accurately measure performance, all other apps were
terminated before the experiment.

5.1 Performance Analysis on Smartphones
As the response time lower limit of an FG app, we first
measured user-perceived response time of the FG app
when only the FG app ran without any BG apps. To
understand the impact of a BG app on performance, we
also measured performance when both FG and BG apps
ran simultaneously on the unmodified kernel. The above
two cases are denoted by FG-only and FG+BG, respec-
tively. We compared the performances of FG-only and
FG+BG with four different versions of FastT: PA, PR,
ID and FastT−. PA, PR, ID represents FastT with a
single main component only, that is, the page allocator,
the page reclaimer, and the I/O dispatcher only, respec-
tively. FastT− employs all of the main components but it
uses the existing storage device I/O scheduler5. In all the
FastT versions we tested, the app status detector was
enabled by default.

Fig. 10 shows that, for six different combinations of
FG and BG apps, FastT− reduced the user-perceived re-
sponse times by 74% over FG+BG, on average. PA ex-
hibited significant performance improvements when BG
apps were write-dominant (i.e., Update). Update re-
quired a copy of data from the user space to the kernel,
which involved the allocation of free pages in the page
cache. PA not only made this acquisition process pre-
emptible, but also gave a higher priority to an FG app so
that it got free pages prior to BG apps. By doing this, PA
was able to prevent FG I/Os from being blocked by BG
writes. Unlike PA, PR mostly contributed to reducing
user-perceived response time when the read-dominant
BG app (i.e., Backup) ran. In our observation, Backup
required many free pages to load files from the storage
before sending them to cloud storage. To create free
pages, it often selected clean pages belonging to FG apps
as victims, which resulted in the eviction of hot data from
the page cache. PR prevented those clean pages from
being evicted from the page cache, thereby reducing the

5Unfortunately, we cannot access the firmware inside the storage
device. For a complete FastT implementation, we use an emulated
storage as discussed in Section 5.2.

USENIX Association 2018 USENIX Annual Technical Conference 23

0 2 4 6 8 10

N5

N6

S6

P1

FG-Only

FG + BG

PA

PR

ID

FastT

(sec)

FastT-

0 2 4 6 8

N5

N6

S6

P1

FG-Only

FG + BG

PA

PR

ID

FastT

(sec)

FastT-

0 2 4 6 8 10

N5

N6

S6

P1

FG-Only

FG + BG

PA

PR

ID

FastT

(sec)

FastT-

0 2 4 6 8 10

N5

N6

S6

P1

FG-Only

FG + BG

PA

PR

ID

FastTFastT

(sec)

FastT-

0 2 4 6 8

N5

N6

S6

P1

FG-Only

FG + BG

PA

PR

ID

FastTFastT

(sec)

FastT-

0 2 4 6 8 10

N5

N6

S6

P1

FG-Only

FG + BG

PA

PR

ID

FastT

(sec)

FastT-

(a) Gallery app launch time under Update. (b) Camera app switch time under Update. (c) Game app loading time under Update.

(d) Gallery app launch time under Backup. (e) Camera app switch time under Backup. (f) Game app loading time under Backup.

Fig. 10: Response time analysis on smartphones.

number of reads from the storage which were not neces-
sary when only FG apps ran. ID improved the response
times by 11% on average, but its impact on performance
was negligible compared with PA and PR. This result
confirmed our hypothesis that rescheduling I/O requests
at the scheduler level was less efficient than doing it at a
higher level – a page cache. As expected, by integrating
the three techniques, FastT− exhibited the best perfor-
mance among all the versions evaluated.

Fig. 10 also shows that FastT− works more efficiently
atop a faster storage device like UFS (used in S6 and
P1) than a slower one like eMMC (used in N5 and N6).
In our observation, the absolute numbers of I/O laten-
cies reduced by FastT− are almost the same, regard-
less of the type of underlying storage devices (i.e., UFS
or eMMC). Therefore, the overall improvement ratio by
FastT− becomes more significant for the fast storage,
where FG apps generally exhibit shorter response times.
This means that as the storage devices evolve in its speed,
the effect of FastT becomes more substantial.

Even though FastT− gave FG I/Os the highest pri-
ority combined with a fast I/O path, we still observed
that FastT− showed longer response times than FG-Only
in all the scenarios. When we compare Fig. 11(a) and
Fig. 6(a), the throughput of FG I/Os was not improved
as much as FG-Only. This is because FastT− cannot re-
solve the I/O-priority inversion problem inside the stor-
age device. Because of a priority-unaware I/O scheduler,
for example, FG writes are always delayed by BG reads.

5.2 Performance Analysis on Emulator
Although the evaluation results in Section 5.1 showed
that FastT− is quite effective on real smartphones,
FastT− didn’t reveal the full potential of our proposed

0

100

200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

FG I/O

BG I/O

0

100

200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

FG I/O

BG I/O

(sec)

(sec)

T
h

ro
u

g
h
p
u

t
(M

B
/s

ec
)

T
h

ro
u

g
h
p
u

t
(M

B
/s

ec
)

(a) Camera under Backup with FastT-.

(b) Camera under Backup with FastT.

Fig. 11: Storage-level snapshot of FG I/Os and BG I/Os.

FastT because it cannot fully control the storage device-
internal I/O scheduler. In order to better understand the
real effect of FastT on user experience, it is important to
implement the proposed I/O device scheduler (in Section
4.5) with a complete support for the fast I/O path from
the Android platform to the storage device. Since stor-
age vendors do not allow to modify their firmware inside
their storage devices, we performed evaluations using an
emulated storage device with I/O traces collected from
real smartphone apps.

We have implemented an emulation layer on top of an
off-the-shelf SSD to emulate I/O latency and throughput
of eMMC and UFS devices. This work is done by using
a storage emulator developed for our prior studies [14].
Then, we collected the app status information, along with
I/O traces, while executing scenarios described in Sec-
tion 5.1 on the smartphone. The collected I/O traces were
replayed on the emulated storage. Finally, we imple-
mented the device I/O scheduler on the emulated storage
which processed FG I/Os with a higher priority.

24 2018 USENIX Annual Technical Conference USENIX Association

0 1 2 3

N5

N6

S6

P1

FG-Only

FastT-

FastT

0 1 2 3

N5

N6

S6

P1

FG-Only

FastT-

FastT

(sec)(sec)

FastT-
FastT-

(a) Camera under Update. (b) Camera under Backup.

Fig. 12: Response time analysis on emulator.
We compared the performance of three policies: FG-

only, FastT−, and FastT, where FastT is FastT− with
the device I/O scheduler. Fig. 12 shows that FastT
greatly improved the performance of Camera under both
Update and Backup. In the case of Camera under
Update on N6, FastT− achieved the response time of
2.53 seconds, whereas FastT achieved the response time
of 0.75 seconds, which is quite close to 0.6 seconds of
FG-Only. For Camera under Backup, similarly, FastT
achieved an equivalent response time to FG-Only. Com-
pared with Fig. 11(a), in Fig. 11(b), we observe that FG
I/Os were processed at a much higher throughput with
negligible delays at the storage device level. This re-
sult shows that higher performance can be achieved if
the storage device is able to handle I/O requests with the
app-level priority information.

Finally, Fig. 13 shows how FastT scales when the
number of BG apps increases from two to six. In addition
to Update and Backup, we used four more I/O-intensive
BG apps for this experiment. As shown in Fig. 13, the
normalized app switch time increases from 1.1 to 1.27
only as the number of BG apps increases from 2 to 6.
These results indicate that FastT can provide the equiv-
alent level of responsiveness to an FG app regardless of
the number of BG apps running with the FG app. Fig.
13 also shows that FastT is effective in improving the
app switch time over the existing Android implementa-
tion (indicated by FG+BG), reducing the app switch time
by 94% when 6 BG apps run.

6 Related Work
Various I/O scheduling techniques have been proposed
to address the problem caused by BG I/Os [18, 19, 49,
50]. A boosting quasi-async I/O (QASIO) is one of such
efforts to provide better I/O scheduling by means of the
priority inheritance protocol [18]. QASIO is motivated
by an observation that high-priority sync writes are often
delayed by low-priority async writes. QASIO improve
overall I/O responsiveness by temporarily increasing the
priority of async writes over sync ones. A request-centric
I/O prioritization (RCP) [19] is proposed which is also
based on the priority inheritance protocol. RCP further
improves QASIO by prioritizing I/O requests at the page
cache layer rather than the block I/O layer.

While still effective, both QASIO and RCP have fun-
damental limitations in improving I/O responsiveness, in

0.40

FG-Only

2 BG Apps

Normalized Camera App Switch Time
0.2 0.80.6 1.21 10 2015 25

3 BG Apps

4 BG Apps

5 BG Apps

6 BG Apps

1.4

FG-Only FG + BG FastT

Fig. 13: Scalability of FastT over the varying BG apps.

comparison to FastTrack. First, both techniques are
not aware of FG I/Os and BG I/Os in smartphones, and
thus, they are unable to prioritize FG I/Os that have a
high impact on user-perceived response times. Second,
QASIO and RCP both rely on the priority inheritance
protocol. Thus, they cannot remove additional delays
required for high-priority I/Os to wait until low-priority
ones finish. Therefore, their effectiveness on improving
user-perceived latency is limited on highly interaction-
oriented devices like smartphones.

Foreground app-aware I/O management (FAIO) [49]
is the first technique that accelerates FG I/Os by adopt-
ing I/O preemption in smartphones. FAIO analyzes FG
app information to identify FG I/Os and preempts BG
I/Os to quickly process FG I/Os. However, since FAIO
uses I/O preemption only at the page cache level, it does
not resolve the priority inversion problem at the storage
device level. It also fails to prevent performance degrada-
tion caused by the aggressive evictions of FG data from
page cache under BG I/O intensive workloads.

7 Conclusions
We have presented a foreground app-aware I/O manage-
ment scheme, FastTrack, which significantly improves
the quality of user experience on smartphones by avoid-
ing I/O-priority inversions between a foreground app and
background apps on Android smartphones. Unlike the
existing techniques, FastTrack employs a preemption-
based approach for fast responsiveness of a foreground
app. In order to support I/O-priority-based preemption
in a holistic fashion, FastTrack reimplemented the page
cache in Linux and the storage-internal I/O scheduler
which previously operated in a foreground app-oblivious
fashion. From a systematic analysis study, these two
modules were identified as the root causes of most I/O-
priority inversions. Our experimental results on real
smartphones show that FastTrack is effective in improv-
ing the quality of user experience on smartphones. For
example, FastTrack achieved the equivalent quality of
user experience of a foreground app regardless of the
number of concurrent background apps.

FastTrack can be extended in several directions. For
example, we believe that our preemption-based approach
can be extended to other computing environments where
a strong requirement on the response time exists.

USENIX Association 2018 USENIX Annual Technical Conference 25

8 Acknowledgments
We would like to thank anonymous referees for valu-
able comments that greatly improved our paper. This
work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea
government (Ministry of Science and ICT) (NRF-
2015M3C4A7065645 and NRF-2018R1A2B6006878).
The ICT at Seoul National University provided research
facilities for this study. Sungjin Lee was supported by the
NRF grant funded by the Korea government (Ministry of
Science and ICT) (NRF-2017R1E1A1A01077410) and
the DGIST R&D Program of the Ministry of Science and
ICT (18-EE-01). (Corresponding Author: Jihong Kim)

References

[1] Android Performance Management. https:

//source.android.com/devices/tech/

power/performance.

[2] Android Process. https://developer.android.
com/reference/android/os/Process.html.

[3] KWON, Y., LEE, S., YI, H., KWON, D., YANG,
S., CHUN, B., HUANG, L., MANIATIS, P., NAIK,
M., AND PAEK, Y. Mantis: automatic performance
prediction for smartphone applications. In Proceed-
ings of the USENIX Conference on Annual Technical
Conference (2013).

[4] MITTAL, T., SINGHAL, LOKESH., AND SETHIA,
D. Optimized CPU Frequency Scaling on Android
Devices Based on Foreground Running Application.
In Proceedings of the Fourth International Confer-
ence on Networks and Communications (2013).

[5] SONG, W., SUNG, N., CHUN, B., AND KIM, J. Re-
ducing Energy Consumption of Smartphones Using
User-Perceived Response Time Analysis. In Pro-
ceedings of the International Workshop on Mobile
Computing Systems and Applications (2014).

[6] Optimizing Foreground App Performance on Nexus
S. https://www.reddit.com/r/Android/

comments/1wqcuh/how_do_i_make_android_

manage_foreground_apps.

[7] RAM Issue on Nexus S. https://forum.

xda-developers.com/nexus-s/help/

ram-issues-nexus-s-jelly-bean-t1854513.

[8] Performance Drop on Nexus S. http://forums.
whirlpool.net.au/archive/1999853.

[9] The First Android Smartphone in the World with
8 GB of RAM. http://bgr.com/2017/01/05/

asus-zenfone-ar-release-date.

[10] Asus ZenFone AR. https://www.asus.com/us/
Phone/ZenFone-AR-ZS571KL.

[11] Android Mobile Phones with 6 GB RAM. https:
//www.techmanza.in/6gb-ram-mobile.html.

[12] Nexus S. https://en.wikipedia.org/wiki/

Nexus_S.

[13] Samsung Galaxy S8. https://en.wikipedia.

org/wiki/Samsung_Galaxy_S8.

[14] HAHN, S.S., LEE, S., JI, C., CHANG, L., YEE,
I., SHI, L., XUE, C.J., AND KIM, J. Improving
File System Performance of Mobile Storage Systems
Using a Decoupled Defragmenter In Proceedings of
the USENIX Annual Technical Conference (2017).

[15] KIM, H., LEE, M., HAN, W., LEE, K., AND
SHIN, I. Aciom: Application Characteristics-aware
Disk and Network I/O Management on Android
Platform. In Proceedings of the International Con-
ference on Embedded Software (2011).

[16] VALENTE, P., AND ANDREOLINI, M. Improving
application responsiveness with the BFQ disk I/O
scheduler. In Proceedings of the 5th Annual Inter-
national Systems and Storage Conference (2012).

[17] NGUYEN, D. Improving smartphone responsive-
ness through I/O optimizations. In Proceedings of
the ACM International Joint Conference on Perva-
sive and Ubiquitous (2014).

[18] JEONG, D., LEE, Y., AND KIM, J. Boost-
ing Quasi-Asynchronous I/O for Better Responsive-
ness in Mobile Devices. In Proceedings of the
USENIX Conference on File and Storage Technolo-
gies (2015).

[19] KIM, S., KIM, H., LEE, J., AND JEONG, J. En-
lightening the I/O Path: A Holistic Approach for
Application Performance. In Proceedings of the
USENIX Conference on File and Storage Technolo-
gies (2017).

[20] Priority Inheritance. https://en.wikipedia.

org/wiki/Priority_inheritance.

[21] Nexus 5. https://en.wikipedia.org/wiki/

Nexus_5.

[22] Nexus 6. https://en.wikipedia.org/wiki/

Nexus_6.

[23] Samsung Galaxy S6. https://en.wikipedia.

org/wiki/Samsung_Galaxy_S6.

26 2018 USENIX Annual Technical Conference USENIX Association

[24] Pixel. https://en.wikipedia.org/wiki/

Pixel_(smartphone).

[25] Dropbox. https://en.wikipedia.org/wiki/

Dropbox_(service).

[26] OneDrive. https://en.wikipedia.org/wiki/

OneDrive.

[27] KUMAR, U. Understanding Android’s
Application Update Cycles. https://

www.nowsecure.com/blog/2015/06/08/

understanding-android-s-application-\

\update-cycles.

[28] Twitter Version History. https://www.apk4fun.
com/history/2699.

[29] DRAGO, I., MELLIA, M., MUNAFO, M.M.,
SPEROTTO, A., SADRE, R., AND PRAS, A. Inside
dropbox: understanding personal cloud storage ser-
vices. In Proceedings of the Internet Measurement
Conference (2012).

[30] QuickPic Gallery. https://play.google.

com/store/apps/details?id=com.alensw.

PicFolder.

[31] Android Camera API. https://developer.

android.com/guide/topics/media/camera.

html.

[32] Dragon Ball Z Dokkan Battle. https:

//play.google.com/store/apps/details?

id=com.bandainamcogames.dbzdokkanww.

[33] strace - trace system calls and signals. https://
linux.die.net/man/1/strace.

[34] Completely Fair Queueing. https://en.

wikipedia.org/wiki/CFQ.

[35] Embedded MultiMediaCard (e.MMC). http:

//www.jedec.org/standards-documents/

technology-focus-areas/

flash-memory-ssds-ufs-emmc/e-mmc.

[36] Universal Flash Storage (UFS). http:

//www.jedec.org/standards-documents/

focus/flash/universal-flash-storage-ufs.

[37] Physical Page Allocation. https://www.

kernel.org/doc/gorman/html/understand/

understand009.html.

[38] Blocking I/O. http://www.makelinux.net/

ldd3/chp-6-sect-2.

[39] Memory Mapping and DMA. https://static.
lwn.net/images/pdf/LDD3/ch15.pdf.

[40] Android App Dependency Configuration.
https://developer.android.com/studio/

build/dependencies.html.

[41] Predefined UIDs for Android Processes.
https://android.googlesource.com/

platform/frameworks/base/+/master/core/

java/android/os/Process.java.

[42] Atomic context and kernel API design. https://
lwn.net/Articles/274695/.

[43] JEONG, S., LEE, K., SON, S., AND WON, Y. I/O
Stack Optimization for Smartphones. In Proceed-
ings of the USENIX Conference on Annual Technical
Conference (2013).

[44] NAM, E.H., KIM, B.S.J., EOM, H., AND MIN,
S.L. Ozone (O3): An Out-of-Order Flash Memory
Controller Architecture. IEEE Transactions on Com-
puters (2013), vol. 60, pp. 653-666.

[45] HAHN, S.S., LEE, S., AND KIM, J. SOS:
Software-based out-of-order scheduling for high-
performance NAND flash-based SSDs. In Proceed-
ings of IEEE Symposium on Mass Storage Systems
and Technologies (2013).

[46] JUNG, M., CHOI, W., SHALF, J., AND KAN-
DEMIR, M.T. Triple-A: a Non-SSD based auto-
nomic all-flash array for high performance storage
systems. In Proceedings of the International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (2014).

[47] SCSI command. https://en.wikipedia.org/

wiki/SCSI_command.

[48] Hearthstone. https://play.google.com/

store/apps/details?id=com.blizzard.

wtcg.hearthstone.

[49] HAHN, S.S., LEE, S., YEE, I., RYU, D., AND
KIM, J. Improving User Experience of An-
droid Smartphones Using Foreground App-Aware
I/O Management. In Proceedings of the Asia-Pacific
Workshop on Systems (2017).

[50] JAUHARI, R., CAREY, M.J., AND LIVNY, M.
Priority-Hints: An Algorithm for Priority-Based
Buffer Management. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (1990).

USENIX Association 2018 USENIX Annual Technical Conference 27

