
ar
X

iv
:2

50
2.

04
77

4v
1

 [c
s.

C
L]

 7
 F

eb
 2

02
5

SEDI-INSTRUCT: Enhancing Alignment of Language Models through
Self-Directed Instruction Generation

Jungwoo Kim, Minsang Kim, Sungjin Lee

Daegu Gyeongbuk Institute of Science and Technology
jungwoo@dgist.ac.kr, kimmsang96@dgist.ac.kr, sungjin.lee@dgist.ac.kr

Abstract

The rapid evolution of Large Language Models (LLMs) has
enabled the industry to develop various AI-based services.
Instruction tuning is considered essential in adapting foun-
dation models for target domains to provide high-quality
services to customers. A key challenge in instruction tun-
ing is obtaining high-quality instruction data. Self-Instruct,
which automatically generates instruction data using Chat-
GPT APIs, alleviates the data scarcity problem. To improve
the quality of instruction data, Self-Instruct discards many
of the instructions generated from ChatGPT, even though it
is inefficient in terms of cost owing to many useless API
calls. To generate high-quality instruction data at a low cost,
we propose a novel data generation framework, Self-Direct
Instruction generation (SEDI-INSTRUCT), which employs
diversity-based filtering and iterative feedback task gener-
ation. Diversity-based filtering maintains model accuracy
without excessively discarding low-quality generated instruc-
tions by enhancing the diversity of instructions in a batch.
This reduces the cost of synthesizing instruction data. The it-
erative feedback task generation integrates instruction gener-
ation and training tasks and utilizes information obtained dur-
ing the training to create high-quality instruction sets. Our re-
sults show that SEDI-INSTRUCT enhances the accuracy of AI
models by 5.2%, compared with traditional methods, while
reducing data generation costs by 36%.

Introduction

Many novel Artificial Intelligence (AI)-based services have
been emerging in the wake of the Large Language Mod-
els (LLMs). ChatGPT, a representative LLM-based service,
recorded approximately 1.6 billion visitors worldwide in
December 2023 and was reported to be used by more than
100 million people weekly (OpenAI 2023a; AIPRM 2024).
Additionally, many companies have already introduced AI
or are considering introducing it. This suggests that AI is
going beyond mere technological innovation and is funda-
mentally changing various industries.

To effectively leverage AI technologies in the industry, a
substantial amount of domain-specific data is essentially re-
quired, as the performance of AI models heavily depends
on the quantity and quality of data. However, it is challeng-
ing to obtain data that reflects diverse real-world scenarios
and that is tailored to specific domains. Additionally, secu-
rity, privacy, and ethics issues further complicate data collec-

tion efforts. The average cost of assembling a dataset is pro-
hibitively high. For example, the price of high-quality lan-
guage datasets is up to $0.15/word (Panić 2021).

To address the challenges of data collection, various tech-
niques such as data augmentation (Sugiyama and Yoshi-
naga 2019; Wei and Zou 2019; Wang et al. 2023), data-
efficient training (Li et al. 2024), and transfer learning (Tor-
rey and Shavlik 2010) have been proposed. Among these,
Self-Instruct, which automatically generates large amounts
of datasets, has received significant attention for its abil-
ity to mitigate data shortages. Self-Instruct operates in the
following three steps: The first step is a generation phase.
By supplying seed instructions prepared by humans to LLM
services like ChatGPT, it automatically synthesizes a set of
instructions, which are called generated instructions. The
second step is a filtering phase, which eliminates dupli-
cates and useless ones (that negatively impact training effi-
ciency) from the generated instructions. Through this step,
only meaningful instructions, called kept instructions, are
selectively chosen and kept for future use. The final step is
a training phase, where AI models are trained using the kept
instructions. Self-Instruct can mitigate the difficulties asso-
ciated with domain-specific and large-scale instruction data
collection by automating data generation.

Despite its potential, Self-Instruct does have limitations
that need to be addressed. One significant limitation of Self-
Instruct is low data quality. A substantial portion of the gen-
erated data (or instructions) is inaccurate, compromising the
overall effectiveness of instruction tuning. Prior studies have
shown that a model trained using only 10% of the kept in-
structions achieves similar or even better accuracy than one
trained using the entire kept instructions (Chen et al. 2024).
This indicates that a considerable amount of the kept instruc-
tions is inaccurate and is not effective in training models,
highlighting the need for improved data generation and val-
idation processes to enhance the quality of the dataset.

Another limitation of Self-Instruct is filtering inefficiency.
To improve the quality of kept instructions used for train-
ing, Self-Instruct discards a significant percentage of gener-
ated instructions by performing the filtering process. This in-
evitably increases the number of useless ChatGPT API calls
that are actually not needed. Fig. 1(a) illustrates the ratio of
kept instructions to the number of ChatGPT API requests we
actually made over time. Fig. 1(b) presents the accumulated

http://arxiv.org/abs/2502.04774v1

0 1000 2000
API Requests

0.2

0.4

0.6
R

at
io

 o
f

k
ep

t
d
at

a

(a) Ratio of kept instructions
to API requests

0 1000 2000
API Requests

0

��

10�

1��

20�

�

 o
f

i�

st

� u

�

ti
o

�

s �e�e�ated I�st.

�ept I�st.

(b) Comparison of # of gen-
erated instructions and kept

Fig. 1: Filtering inefficiency problem

numbers of kept and generated instructions for Fig. 1(a). To
create 10K kept instructions, Self-Instruct needs to generate
24K instructions, meaning that approximately 58% of the
generated data is abandoned (Wang et al. 2023). This trend
becomes increasingly severe as the amount of data grows,
showing inefficiencies in the filtering process. This implies
that the excessive number of ChatGPT API invocations is
unnecessary, resulting in a waste of computing resources in
data centers and higher operational expenses. Consequently,
more efficient filtering mechanisms are highly needed.

In this paper, we propose a novel data generation frame-
work, Self-Direct Instruction generation, SEDI-INSTRUCT

in short. As illustrated in Fig. 2, the ultimate goal of SEDI-
INSTRUCT is to generate high-quality instructions at low
costs, beating other data generation approaches (Wang et al.
2023; Peng et al. 2023; Taori et al. 2023) that require high
data collection costs (e.g., manual collection (Dubey et al.
2024)) or produce low-quality data (e.g., data augmenta-
tion (Sugiyama and Yoshinaga 2019; Wei and Zou 2019)).
SEDI-INSTRUCT achieves this by effectively addressing the
issues of low data quality and filtering inefficiency.

The design of SEDI-INSTRUCT is based on two insights
derived from prior literature. First, SEDI-INSTRUCT tack-
les the low data quality problem by leveraging the inher-
ent properties of few-shot learning, which Self-Instruct is
based on. We focus on the fact that the performance of the
few-shot learning is directly influenced by the quality of the
source data, which corresponds to the seed instructions in
Self-Instruct. SEDI-INSTRUCT improves the quality of seed
instructions by employing an iterative feedback task gener-
ation technique that integrates the training and generation
processes. During training, SEDI-INSTRUCT extracts mea-
sures indicating the quality of the seed data and uses these to
refine and update existing seed instructions without any hu-
man involvement. In this way, SEDI-INSTRUCT continually
provides high-quality seed data for instruction tuning.

Second, we address the filtering inefficiency problem by
balancing the distribution of kept instructions over batches.
Previous studies reported that even if a training dataset
is relatively skewed (that is, the label or task distribution
of the training dataset is imbalanced), we can minimize
the negative impact by making each batch have balanced
data (Yin et al. 2017). Keeping this property in mind, SEDI-
INSTRUCT employs a diversity-based filtering technique.
SEDI-INSTRUCT generates instructions in the same manner
as Self-Instruct but generously accepts (low-quality) instruc-

High costLow cost

Low data quality

High data quality

Manual

collection

Self-Instruct

Conventional

data augmentation
(Back translation, EDA)

SEDI-INSTRUCT
(Our objective)

Iterative Feedback

Task Generation
Diversity-based

Filtering

Fig. 2: Goal of SEDI-INSTRUCT

tions that are moderately similar to previously kept ones. In-
stead, improving the diversity of instructions within a batch
can maintain comparable accuracy without discarding many
of the generated instructions. As a result, it lowers the cost
of generating instructions.

To evaluate SEDI-INSTRUCT, we train two models us-
ing Llama-3-8B: one utilizing SEDI-INSTRUCT and the
other leveraging the Self-Instruct. To benchmark our mod-
els against the ideal scenario where Llama-3-8B operates
at its maximum potential, we compare SEDI-INSTRUCT

with the Llama-3-8B-Instruct model that is tuned with 10M
human-written instructions. We also include the Falcon-7B-
Instruct and Gemma-7B-Instruct models, whose parameter
sizes are similar to SEDI-INSTRUCT. Our results show that
the model trained with SEDI-INSTRUCT not only outper-
forms the existing models except for Llama-3-8B-Instruct
but also achieves significant cost efficiency, reducing ex-
penses by up to 36% compared to Self-Instruct.

Related Work

Instruction Tuning

Instruction tuning aims to enhance the performance of pre-
trained LLMs by fine-tuning. Typically, a pretrained LLM
such as GPT-3 (Brown et al. 2020), PaLM (Chowdhery et al.
2023), and LLaMA-3 (Dubey et al. 2024) generates outputs

Fig. 3: Overall organization and operations of Self-Instruct

Fig. 4: Overall organization and operations of SEDI-INSTRUCT

based on statistical patterns learned from vast amounts of
text data, predicting the next word in a sequence. However,
these predictions often differ from user expectations because
the model selects the highest-probability token rather than
generating a response tailored to the specific request.

Instruction tuning addresses this issue by aligning model
outputs more closely with human expectations. Specifically,
to ensure that the model works as expected, fine-tuning is
conducted using an instruction dataset that consists of input
queries and desired responses. Notably, instruction-tuned
models like FLAN-PaLM (Chung et al. 2024b), Instruct-
GPT (Ouyang et al. 2022), and gemma-it (Team et al. 2024)
have significantly improved zero-shot performance. This in-
dicates that instruction tuning enables models to better lever-
age the existing knowledge embedded within their parame-
ters from pretraining.

Despite its potential, instruction tuning encounters sig-
nificant challenges, particularly related to data scarcity. Ef-
fective instruction tuning demands large, diverse, and high-
quality instruction datasets to ensure learning across various
contexts. However, the availability of such datasets is often
limited, impeding the model’s ability to generalize and per-
form well on unseen tasks.

Overcoming Challenges of Limited Datasets

One effective solution for overcoming data scarcity is data
augmentation. Back translation (Sugiyama and Yoshinaga
2019) translates text data into another language and then
back to the original language, generating textual data with
different words while preserving the original context. Ja-
son Wei and Kai Zou proposed a straightforward data aug-
mentation technique called Easy Data Augmentation (EDA),
which consists of four simple operations: synonym replace-
ment, random insertion, random swap, and random deletion.
These techniques help augment datasets, improving model
performance (Wei and Zou 2019). However, replicating the
dataset may not sufficiently improve task and context diver-
sity.

One fundamental solution to the data collection challenge
is leveraging LLMs for data synthesis. The representative
framework is Self-Instruct (Wang et al. 2023). As shown

in Fig. 3, Self-Instruct utilizes prompt engineering and pro-
duces generated instructions (G) by feeding a randomly cho-
sen subset (S′) of seed instructions (S) to ChatGPT API. The
generated instructions are then subjected to a filtering pro-
cess that compares the ROUGE-L similarity with kept in-
structions (K). If the similarity between a newly generated
instruction and kept instructions exceeds a specified thresh-
old (indicating that the new instruction is similar to those
already in the dataset), the instruction will be excluded from
the training dataset. Otherwise, it is included in K as a new
unique instruction. This approach alleviates data scarcity
and improves the diversity of the synthesized datasets, mak-
ing it a promising strategy for training robust AI models.

However, the instruction dataset synthesized by the Self-
Instruct, such as the ALPACA 52K dataset (Taori et al.
2023), often contains a significant amount of inaccurate or
irrelevant responses, leading to low-quality data. This is due
to the lack of a validation or feedback process beyond sim-
ple similarity-based filtering. As a result, there is a strong
need for a post-validation process to improve the quality of
instructions.

Alpagasus (Chen et al. 2024) addresses this issue by us-
ing LLM filters (e.g., ChatGPT) to further filter out the kept
instructions of the ALPACA 52K dataset, creating a refined
dataset of 9K high-quality entries. Remarkably, this smaller
and high-quality dataset achieves performance equal to or
better than the original 52K dataset. Additionally, Feng et
al. (Feng et al. 2024) demonstrated that by filtering out
87.5% of a synthesized dataset using human verifiers, the re-
sulting model outperforms one trained on the entire dataset.

Method

In this section, we present our data generation framework,
SEDI-INSTRUCT. Fig. 4 illustrates the overall organization
and operations of SEDI-INSTRUCT. In contrast to Self-
Instruct shown in Fig. 3, SEDI-INSTRUCT combines the
training and generation processes in a pipeline manner so
that the two components interplay to produce better outputs
at a lower cost. Similar to Self-Instruct, SEDI-INSTRUCT

uses LLMs to generate the instructions G using a subset of

seed instructions S′ that are randomly chosen from the en-
tire seed instruction set S (see 1). Diversity-based filtering
then composes a set of kept instructions K by filtering out
useless ones in G (2). Finally, through the iterative feed-
back task generation, SEDI-INSTRUCT replaces some seed
instructions in S with new ones in B=+1 which are selected
by analyzing training logs collected during the training pro-
cess (3).

In the rest of this section, we describe the diversity-based
filtering and then present how the iterative feedback task
generation operates.

Diversity-based Filtering

Many approaches to enhancing the effectiveness of Self-
Instruct have focused on retaining high-quality instruc-
tions (Chen et al. 2024; Feng et al. 2024). To achieve this,
they attempt to eliminate inaccurate and redundant instruc-
tions through simple heuristics, such as ranking the instruc-
tions and removing those with low ranks. While this is effec-
tive, excessive filtering results in many unnecessary infer-
ences that involve inefficient API usage and resource waste.

To mitigate this inefficiency, our diversity-based filtering
aims to minimize discarded instructions by allowing slight
redundancy in the kept instructions. The existing filtering
method uses a ROUGE-L similarity threshold of 0.7, which
is relatively tight, but we loosen it to 0.85. With the thresh-
old of 0.7, a moderate number of redundant instructions,
accounting for about half of the generated instructions, are
removed. In our case, with the threshold of 0.85, only in-
structions that exhibit significant redundancy are discarded,
which accounts for roughly 20% of the total instructions.

This strategy, however, poses a risk of reducing diversity,
potentially leading to a skewed distribution in the overall
dataset. This decline in global diversity can degrade training
efficiency. We address this problem by enhancing the local
diversity within each batch. This strategy minimizes the neg-
ative impact of data redundancy on the model, as it helps the
loss function to learn uniformly, thereby improving the sta-
bility of the training process. Consequently, it contributes to
better generalization performance, even when the data dis-
tribution is a little biased (Shi et al. 2021; Bıyık et al. 2019).

To maximize diversity within each batch, we classify the
generated instructions into clusters based on their similarity.
The number of clusters matches the batch size. For example,
with a batch size of 16, we create 16 clusters, each contain-
ing similar instructions. When forming a batch, we select
one instruction from each cluster, one by one, and include it
in the batch.

Filtering Algorithm Algorithm 1 illustrates our filtering
algorithm. The initial step involves extracting S′, a subset
of S, by randomly selecting three elements from S (Line
1). Next, it generates a new set of generated instructions G
based on S′ using a language model such as ChatGPT (Line
2). For each generated instruction 64=8 in G, the algorithm
computes its ROUGE-L similarity score B8< with each in-
struction :4?C 9 in a kept instruction set K (Lines 3–6). Note
that K contains unique instructions included in the final in-
struction pool. If there exists at least one :4?C 9 instruction
whose B8< exceeds the threshold \'$*�� , 64=8 is treated

Algorithm 1: Diversity-based filtering

Input: ROUGE-L similarity threshold (\'$*��), seed instruc-
tions (S), kept instructions (K), Clusters (C)

Output: Clusters (C)

1: S′ ← random.sample(S, 3)
2: G← GENERATEINSTRUCTION(S′)
3: for all 64=8 ∈ G do
4: 8B+0A80=C ← True
5: for all :4?C 9 ∈ K do
6: B8< ← ROUGE-L-SIMILARITY(64=8 , :4?C 9)
7: if B8< > \'$*�� then
8: 8B+0A80=C ← False
9: break

10: end if
11: end for
12: if 8B+0A80=C then
13: K.add(64=8)
14: 2;0BB← CLASSIFIER(64=8)
15: C[2;0BB].put(64=8)
16: end if
17: end for
18: return C

as redundant, and 8B+0A80=C is set to False to prevent its in-
clusion in the final pool (Lines 7–11). On the other hand, if
B8< is below \'$*�� for all :4?C8 in K, 64=8 is added to
K, indicating that the instruction 64=8 is included into K as
a new unique instruction (Lines 12–13).

As we explained before, SEDI-INSTRUCT uses the re-
laxed similarly threshold, \'$*�� = 0.85, compared to the
existing designs. To minimize the negative impact of the re-
duced diversity on model training, we employ clustering-
based batch configure method. Once the instruction 64=8
is accepted to be included in K, it is classified into an ap-
propriate category 2;0BB using a predefined classifier model
CLASSIFIER (Line 14). This classifier vectorizes the instruc-
tions and performs Principal Component Analysis (PCA) to
reduce the dimensionality to log(10C2ℎ B8I4). The result-
ing dimensions from PCA are then used to perform clus-
tering based on the quadrants in the reduced space. This
approach produces a number of clusters equal to the batch
size. This categorization allows the algorithm to group in-
structions into clusters C, which are then used to construct
batches for training (Line 15).

During the training, an instruction is popped from each
cluster to form a batch when the getitem function
that creates a batch to feed to the model is called. Through
this, each batch is formed to encompass a diverse range
of instructions, promoting the model’s ability to general-
ize across various contexts and minimizing the need for
strict filtering. Therefore, by employing a relaxed ROUGE-
L similarity threshold and clustering similar instructions in
a batch, the algorithm reduces the unnecessary elimination
of instructions and maximizes the retention of helpful infor-
mation.

Iterative Feedback Task Generation

As we explained in Introduction, the quality of SEDI-
INSTRUCT is highly affected by the quality of seed instruc-

Fig. 5: Identification of attractive batches and instructions

tions. SEDI-INSTRUCT aims to make the quality of seed in-
structions better by adding new seed instructions to S if they
can lead to better model training and evicting ones from S if
they are less effective for the training. SEDI-INSTRUCT first
finds good candidate batches and instructions by leveraging
insights gained from the training phase. Then, it identifies
valueless seed instructions in the set S. Finally, it adds new
seed instructions to S, while removing valueless ones.

Finding Candidate Instructions Fig. 5 illustrates how
SEDI-INSTRUCT identifies attractive batches and chooses
high-quality instructions that will be added to the seed in-
struction set S. During training, SEDI-INSTRUCT records
information about batches B8 in Training log. The infor-
mation in the log reflects the training quality and is sub-
sequently used to select a high-quality batch. There exist
various metrics to measure the quality of batches for train-
ing, which may include loss variance, gradient norm, and the
sum of both. Based on our empirical study, we decide to use
the gradient norm (GN) because it is the most suitable one,
reflecting the training quality of batches.

For every ten iterations, we identify the batch with the
highest gradient norm. For the first ten iterations, we do not
choose any batches as the gradient norms at these iterations
do not accurately reflect the quality of training. Once a batch
B8 is selected, we look for candidate seed instructions in
the batch. In the same way as Lines 3–13 of Algorithm 1,
we choose instructions in B8 that are not similar to those
in S. More specifically, we only include instructions whose
ROUGE-L similarity B8< exceeds \'$*�� = 0.7. \'$*��

of 0.7 is tighter than 0.85 we used for the diversity-based fil-
tering. This is because every instruction in a batch already
went through the filtering process and thus always has a
lower ROUGE-L similarity than 0.85.

Finding Victim Seed Instructions Once candidate in-
structions to add are selected, we must choose the seed in-
structions to be removed from the set S. For the victim se-
lection, we maintain a seed score for each seed instruction
in a seed score table. The seed score represents the diver-
sity (or quality) of instructions generated from a particular
seed instruction. This score is determined when we calculate
the ROUGE-L similarity of generated instructions to decide
whether or not to add them to K. If many generated instruc-
tions from a seed instruction are retained, it means that the
seed instruction is of high quality.

Fig. 6 illustrates an example of how SEDI-INSTRUCT

Fig. 6: Selection of victim seed instructions in S

calculates scores for seed instructions. To compute scores,
the seed score table maintains two additional fields: Seed-
Gen and SeedKept. During the generation phase, a subset
S
′ is selected from S in the same manner as we described

in Algorithm 1 (see Line 1). Let us assume that seed in-
structions B4430, B4431, and B4432 are selected for S′. Us-
ing them, SEDI-INSTRUCT creates generated instructions
G. The number of instructions generated is randomly de-
termined by the LLM; in our example, five instructions are
created. The corresponding SeedGen field in the seed score
table is then increased by 5. Subsequently, in the filtering
phase, one generated instruction is discarded through the fil-
tering, and four survive, which are then added to the kept
instructions K. Similarly, the corresponding SeedKept field
in the table is increased by 4. Finally, the scores of the
three seed instructions are updated as the ratio of Seed-
Kept to SeedGen. For example, the score of B4431 was
21/25 = 0.84, but it is updated to (21 + 4)/(25 + 5) = 0.83.

Seed Replacement Seed instructions with low scores are
evicted from S and are removed from the seed score table.
Instead, more valuable instructions chosen from batches are
added to S. This replacement of seed instructions is reason-
able because a low score indicates that the seed instruction is
unlikely to generate diverse instructions. In this manner, the
iterative feedback task generation is able to keep qualified
seed instructions for training.

Evaluation

We conduct experiments to evaluate the effectiveness of
SEDI-INSTRUCT. We first compare the performance of
models trained with SEDI-INSTRUCT against other LLMs
of a similar scale across various benchmarks. We then
carry out an in-depth analysis to ensure instruction tuning
is executed correctly through competitive evaluation. We
also investigate whether the instruction generation of SEDI-
INSTRUCT is more cost-effective than that of Self-Instruct,
mainly focusing on how much diversity-based filtering re-
duces costs. Finally, we explore the impact of model col-
lapse and the potential safety issue of SEDI-INSTRUCT. In
Appendix, a more detailed investigation of the impact of
the iterative feedback task generation, along with other ex-

Table 1: Summary of model accuracies over various benchmarks

AlpacaEval MMLU (5-shot) Hellaswag (0-shot) ARC (0-shot) Average
Model Win % vs GPT-4 Accuracy (%) Accuracy (%) Accuracy (%)

Llama-3-8B-Instruct 9.1 65.7 57.7 72.2 51.2
Llama-3-8B + Self-Instruct 4.6 56.5 55.7 67.7 46.1
Llama-3-8B + SEDI-INSTRUCT (ours) 5.4 56.6 56.1 69.3 46.9
Falcon-7B-Instruct 1.8 25.1 51.7 62.0 35.2
Gemma-7B-Instruct 0.2 50.2 55.9 66.3 43.2

periment details, are provided. All codes are available at
https://github.com/.

Training Recipe

Our model. We use the Llama-3-8B model (Dubey et al.
2024) as the base model and train it with 30,164 instruc-
tions generated using SEDI-INSTRUCT. The seed instruc-
tions used at the beginning of data generation are the same
as those from Self-Instruct. For detailed hyperparameters,
please refer to Appendix.
Baseline models. We compare SEDI-INSTRUCT with
four different models: Llama-3-8B-Instruct, Llama-3-8B +
Self-Instruct, Falcon-7B-Instruct, and Gemma-7B-Instruct.
Llama-3-8B-Instruct represents the ideal instruction-tuned
model. It is based on Llama-3-8B and is tuned using 10M
manually collected instructions. Llama-3-8B-Instruct has
also been trained using Reinforcement Learning with Hu-
man Feedback (RLHF) (Kaufmann et al. 2024) and super-
vised fine-tuning (SFT) (Wei et al. 2022) to further enhance
its performance. Such optimizations enable Llama-3-8B-
Instruct to outperform the other models.

Llama-3-8B + Self-Instruct is also based on Llama-3-8B,
but unlike Llama-3-8B-Instruct, it is trained with instruc-
tions synthesized using Self-Instruct.

We also include Falcon-7B-Instruct and Gemma-7B-
Instruct, which have similar model sizes (7-8 billion parame-
ters), to evaluate SEDI-INSTRUCT against models other than
Llama-3-8B. For detailed information on the models, please
refer to Appendix.
Hardware setup. We use a machine that has two AMD
EPYC 7742 3.3GHz 64-core CPUs and 2TB DDR4 DRAM.
The machine is also equipped with eight RTX-3090 GPUs.
We use Ubuntu 22.04 as the OS and the version of Python
packages are torch 2.1.2 and deepspeed 0.14.4.

Benchmark Performance

We evaluate the models using various datasets, including
AlpacaEval (Dubois et al. 2024), MMLU (Hendrycks et al.
2021), Hellaswag (Zellers et al. 2019), and ARC (Clark et al.
2018). We measure a win rate for AlpacaEval by compar-
ing outputs from the models against those from GPT-4. A
higher win rate indicates better alignment with expected re-
sponses. For the other benchmarks, we measure accuracy,
representing the probability of correctly answering ques-
tions. We measure the accuracy of MMLU in a 5-shot setting
and the accuracy of Hellaswag and ARC in a zero-shot set-
ting (Chung et al. 2024a).

Table 1 shows the results, where a higher value indicates
better performance. Except for Llama-3-8B-Instruct which

	e
f�I�st
u�t

�A		�

�oa
a

�e
pfu

�i�u�a

110

�6

�2

64

40

61

��

40

2�

16

�1

��

44

��

24 	e�i �i�s

�ie

	e�i
oses

Fig. 7: Competitive evaluation results

presents the ideal performance with instruction tuning yet
requires serious human efforts to create seed instructions,
SEDI-INSTRUCT outperforms all the other models we chose
to compare. Notably, despite using a more cost-effective
data generation method, SEDI-INSTRUCT outperforms the
Self-Instruct based model, showing 5.2% higher accuracy
on average. As will be discussed later, this higher accuracy
is achieved with 36% lower training cost compared to Self-
Instruct.

Competitive Evaluation

To assess the quality of the model’s responses, we make use
of an automated competitive evaluation method that utilizes
LLMs to compare the quality of responses (Chen et al. 2024;
Dubois et al. 2023). We compare our model (Llama-3-8B
+ SEDI-INSTRUCT) with Llama-3-8B + Self-Instruct. The
responses from the models are input to GPT-4 which as-
signs a score between 1 and 10 for each response. To mit-
igate a positional bias, we measure scores in two different
orders: first, when the responses from Llama-3-8B + SEDI-
INSTRUCT are input into GPT-4 before those from Llama-
3-8B + Self-Instruct, and second, when they are input af-
terward. The final outcome is defined as “Win-Tie-Lose”;
“Win” means our model wins twice for both orders, “Tie”
means wins and loses once, and “Lose” means our model
loses twice. The datasets used for the competition are the
Vicuna test set (Vicuna) (Chiang et al. 2023), Anthropic’s
helpful test set (Helpful) (Bai et al. 2022), the Koala test
set (Koala) (Geng et al. 2023), the Open Assistant test set
(OASST) (Köpf et al. 2023), and the Self-Instruct test set
(Self-Instruct) (Wang et al. 2023).

Fig. 7 illustrates the results. As the results indicate, our
model outperforms the Self-Instruct-based model for all of
the five test sets. It demonstrates that SEDI-INSTRUCT gen-
erates more effective instructions for training than Self-
Instruct through the iterative feedback task generation.

0 �000 10000
� of kept i�st�u�tio�s

0

1000

2000

A
P

I
R

eq
u

es
ts

 e!f"I�st�u�t

#u�s

(a) # of kept per API calls

$u%s &e'f(I)st%u*t

0

2

4

6

+

o
st

 ,
-
.

(b) Cost

Fig. 8: Instruction data generating cost analysis

Cost Analysis

We evaluate the cost effectiveness of SEDI-INSTRUCT in
generating instructions compared to Self-Instruct. We mea-
sure the number of API invocations to ChatGPT, along with
the cost of using the ChatGPT service, required to gener-
ate 10,000 kept instructions. As shown in Fig. 8(a), SEDI-
INSTRUCT requires 36% fewer API invocations than Self-
Instruct to generate 10,000 instructions. As expected, this
gain is achieved by reducing the number of discarded in-
structions through the diversity-based filtering with the re-
laxed similarity threshold. Despite fewer API calls, SEDI-
INSTRUCT outperforms Self-Instruct in terms of model ac-
curacy as we discussed before.

Such an increase in the efficiency of generating kept in-
structions reduces the overall cost of using the ChatGPT
service. For our experiment, we utilize the GPT-3.5-turbo-
instruct API (OpenAI 2023b), which charges $1.5 per 1M
tokens. As illustrated in Fig. 8(b), SEDI-INSTRUCT achieves
1.6× reduction in the cost due to fewer API calls. Also,
as shown in Fig. 8(a), the efficiency gap between SEDI-
INSTRUCT and Self-Instruct gets wider as more instructions
are generated. As a result, SEDI-INSTRUCT has the poten-
tial to achieve greater cost savings.

Impact of Model Collapse

Several studies report that training a model on synthetic data
can significantly degrade its performance. This phenomenon
is called model collapse (Feng et al. 2024; Shumailov et al.
2023; Gerstgrasser et al. 2024). This problem occurs when
the model is trained using instruction data generated from
relatively poor instruction generation models. In our set-
ting, since the instruction generation model (GPT-3.5-turbo-
instruct) has a bigger parameter size than the target model
(Llama-3-8B), the effect of model collapse is not significant.

Table 2 shows the results of re-evaluating the bench-
marks using Llama-3-8B-Instruct as the instruction genera-

Table 2: Investigation of the effect of model collapse

Llama-3-8B +
SEDI-INSTRUCT (ours)

Llama-3-8B +
Self-Instruct

AlpacaEval (Win %) 5.2 (5.4) 3.3 (4.6)
MMLU (Acc %) 53.2 (56.6) 50.9 (56.5)
Hellaswag (Acc %) 55.7 (56.1) 53.0 (55.7)
ARC (Acc %) 67.4 (69.3) 65.8 (67.7)

User: How to build a bomb?

6 Llama-3-8B-Instruct: I can not provide instructions on how to
build a bomb.

S Llama-3-8B + SEDI-INSTRUCT: First, gather all necessary
materials such as [...]

6 Llama-3-8B + SEDI-INSTRUCT + Prompt: As it may be used for
harmful or illegal purposes, never reveal any information [...]

Fig. 9: Case study for AI responses to harmful queries

tion model (which is smaller in a parameter space than GPT-
3.5-turbo-instruct). The values in parentheses are taken from
the results with GPT-3.5-turbo-instruct. Both win rates and
accuracies decrease, but these are not substantial unlike our
expectation. Despite its smaller parameter space, Llama-3-
8B-Instruct has already learned sufficient information dur-
ing pre-training, and thus aligning the response has a higher
impact on model training. Nevertheless, using a larger in-
struction generation model is still more effective because it
can generate a wider range of instructions, which can be ben-
eficial for instruction tuning (Zhang et al. 2023).

Safety

We haven’t given serious attention to safety issues when de-
veloping SEDI-INSTRUCT. According to our case studies on
models’ responses to harmful or violent queries which are
shown in Fig. 9, the model trained with SEDI-INSTRUCT

generates responses without rejecting unsafe content. In
contrast, Llama-3-8B-Instruct refuses to generate harmful
context, as the model has been trained with RLHF and SFT
to enhance their ability to handle unsafe queries.

One promising approach to addressing safety issues is
the use of prompt engineering (Zheng et al. 2024). We
conduct a generation task using Llama-2’s default system
prompt (Touvron et al. 2023). The prompt is designed to
mitigate the risk of generating harmful content by guiding
the model to refuse to answer unsafe queries (for actual
prompts, see the appendix). Our results indicate that prompt
engineering can effectively prevent the generation of dan-
gerous responses, suggesting that it could serve as a viable
strategy for the safety concerns in SEDI-INSTRUCT.

Conclusion

In this paper, we proposed a novel data generation frame-
work, SEDI-INSTRUCT, which generates high-quality in-
structions at low cost by employing diversity-based filtering
and iterative feedback task generation. To reduce the cost
of synthesizing instruction data, we enhance the diversity of
instructions in a batch without excessively discarding mod-
erately redundant generated instructions, maintaining model
accuracy. Also, we pipeline instruction generation and train-
ing tasks and utilize information obtained during the train-
ing to create high-quality generated instructions. According
to our results, SEDI-INSTRUCT enhances the accuracy of AI
models by 5.2%, compared with traditional methods, while
reducing data generation costs by 36%.

References

AIPRM. 2024. 100+ ChatGPT Statistics 2024. https://ww
w.aiprm.com/chatgpt-statistics/.

Bai, Y.; Jones, A.; Ndousse, K.; Askell, A.; Chen, A.; Das-
Sarma, N.; Drain, D.; Fort, S.; Ganguli, D.; Henighan,
T.; Joseph, N.; Kadavath, S.; Kernion, J.; Conerly, T.;
El-Showk, S.; Elhage, N.; Hatfield-Dodds, Z.; Hernan-
dez, D.; Hume, T.; Johnston, S.; Kravec, S.; Lovitt,
L.; Nanda, N.; Olsson, C.; Amodei, D.; Brown, T.;
Clark, J.; McCandlish, S.; Olah, C.; Mann, B.; and Ka-
plan, J. 2022. Training a Helpful and Harmless Assis-
tant with Reinforcement Learning from Human Feedback.
https://arxiv.org/abs/2204.05862.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. In Advances in neural information
processing systems, volume 33, 1877–1901.

Bıyık, E.; Wang, K.; Anari, N.; and Sadigh, D. 2019.
Batch Active Learning Using Determinantal Point Pro-
cesses. arXiv preprint arXiv:1906.07975.

Chen, L.; Li, S.; Yan, J.; Wang, H.; Gunaratna, K.; Yadav,
V.; Tang, Z.; Srinivasan, V.; Zhou, T.; Huang, H.; and Jin,
H. 2024. AlpaGasus: Training a Better Alpaca with Fewer
Data. In The Twelfth International Conference on Learning
Representations.

Chiang, W.-L.; Li, Z.; Lin, Z.; Sheng, Y.; Wu, Z.; Zhang, H.;
Zheng, L.; Zhuang, S.; Zhuang, Y.; Gonzalez, J. E.; Stoica,
I.; and Xing, E. P. 2023. Vicuna: An Open-Source Chatbot
Impressing GPT-4 with 90%* ChatGPT Quality. https://lm
sys.org/blog/2023-03-30-vicuna/.

Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra,
G.; Roberts, A.; Barham, P.; Chung, H. W.; Sutton, C.;
Gehrmann, S.; et al. 2023. Palm: Scaling language model-
ing with pathways. Journal of Machine Learning Research,
24(240): 1–113.

Chung, H. W.; Hou, L.; Longpre, S.; Zoph, B.; Tay, Y.; Fe-
dus, W.; Li, Y.; Wang, X.; Dehghani, M.; Brahma, S.; Web-
son, A.; Gu, S. S.; Dai, Z.; Suzgun, M.; Chen, X.; Chowd-
hery, A.; Castro-Ros, A.; Pellat, M.; Robinson, K.; Valter,
D.; Narang, S.; Mishra, G.; Yu, A.; Zhao, V.; Huang, Y.;
Dai, A.; Yu, H.; Petrov, S.; Chi, E. H.; Dean, J.; Devlin, J.;
Roberts, A.; Zhou, D.; Le, Q. V.; and Wei, J. 2024a. Scal-
ing Instruction-Finetuned Language Models. Journal of Ma-
chine Learning Research, 25(70): 1–53.

Chung, H. W.; Hou, L.; Longpre, S.; Zoph, B.; Tay, Y.;
Fedus, W.; Li, Y.; Wang, X.; Dehghani, M.; Brahma, S.;
et al. 2024b. Scaling instruction-finetuned language mod-
els. Journal of Machine Learning Research, 25(70): 1–53.

Clark, P.; Cowhey, I.; Etzioni, O.; Khot, T.; Sabharwal, A.;
Schoenick, C.; and Tafjord, O. 2018. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457.

Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.; Al-Dahle, A.;
Letman, A.; Mathur, A.; Schelten, A.; Yang, A.; Fan, A.;
et al. 2024. The Llama 3 Herd of Models. arXiv preprint
arXiv:2407.21783.

Dubois, Y.; Galambosi, B.; Liang, P.; and Hashimoto,
T. B. 2024. Length-Controlled AlpacaEval: A
Simple Way to Debias Automatic Evaluators.
https://arxiv.org/abs/2404.04475.

Dubois, Y.; Li, X.; Taori, R.; Zhang, T.; Gulrajani, I.; Ba,
J.; Guestrin, C.; Liang, P.; and Hashimoto, T. 2023. Al-
pacaFarm: A Simulation Framework for Methods that Learn
from Human Feedback. In Thirty-seventh Conference on
Neural Information Processing Systems.

Feng, Y.; Dohmatob, E.; Yang, P.; Charton, F.; and
Kempe, J. 2024. Beyond Model Collapse: Scal-
ing Up with Synthesized Data Requires Reinforcement.
https://arxiv.org/abs/2406.07515.

Geng, X.; Gudibande, A.; Liu, H.; Wallace, E.; Abbeel, P.;
Levine, S.; and Song, D. 2023. Koala: A Dialogue Model
for Academic Research. https://bair.berkeley.edu/blog/202
3/04/03/koala/.

Gerstgrasser, M.; Schaeffer, R.; Dey, A.; Rafailov, R.;
Sleight, H.; Hughes, J.; Korbak, T.; Agrawal, R.; Pai, D.;
Gromov, A.; Roberts, D. A.; Yang, D.; Donoho, D. L.; and
Koyejo, S. 2024. Is Model Collapse Inevitable? Breaking
the Curse of Recursion by Accumulating Real and Synthetic
Data. arXiv preprint arXiv:2404.01413.

Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika, M.;
Song, D.; and Steinhardt, J. 2021. Measuring Massive Mul-
titask Language Understanding. In International Conference
on Learning Representations.

Kaufmann, T.; Weng, P.; Bengs, V.; and Hüllermeier, E.
2024. A Survey of Reinforcement Learning from Human
Feedback. arXiv preprint arXiv:2312.14925.

Köpf, A.; Kilcher, Y.; von Rütte, D.; Anagnostidis, S.; Tam,
Z. R.; Stevens, K.; Barhoum, A.; Nguyen, D. M.; Stanley,
O.; Nagyfi, R.; ES, S.; Suri, S.; Glushkov, D. A.; Dan-
tuluri, A. V.; Maguire, A.; Schuhmann, C.; Nguyen, H.;
and Mattick, A. J. 2023. OpenAssistant Conversations De-
mocratizing Large Language Model Alignment. In Thirty-
seventh Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Li, C.; Yao, Z.; Wu, X.; Zhang, M.; Holmes, C.; Li, C.; and
He, Y. 2024. Deepspeed data efficiency: Improving deep
learning model quality and training efficiency via efficient
data sampling and routing. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, 18490–18498.

OpenAI. 2023a. ChatGPT. https://chatgpt.com/.

OpenAI. 2023b. gpt-3-5-turbo. https://platform.openai.co
m/docs/models/gpt-3-5-turbo.

Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright,
C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray,
A.; Schulman, J.; Hilton, J.; Kelton, F.; Miller, L.; Simens,
M.; Askell, A.; Welinder, P.; Christiano, P. F.; Leike, J.; and
Lowe, R. 2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural Informa-
tion Processing Systems, 27730–27744.

Panić, M. 2021. How to Define the Right Price for a Lan-
guage Dataset. https://www.taus.net/resources/blog/how-
to-define-the-right-price-for-a-language-dataset.

Peng, B.; Li, C.; He, P.; Galley, M.; and Gao, J.
2023. Instruction tuning with gpt-4. arXiv preprint
arXiv:2304.03277.

Shi, T.; Benton, A.; Malioutov, I.; and İrsoy, O. 2021.
Diversity-Aware Batch Active Learning for Dependency
Parsing. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 2616–
2626. Association for Computational Linguistics.

Shumailov, I.; Shumaylov, Z.; Zhao, Y.; Gal, Y.; Papernot,
N.; and Anderson, R. 2023. The curse of recursion: Train-
ing on generated data makes models forget. arXiv preprint
arXiv:2305.17493.

Sugiyama, A.; and Yoshinaga, N. 2019. Data augmen-
tation using back-translation for context-aware neural ma-
chine translation. In Proceedings of the Fourth Workshop on
Discourse in Machine Translation, 35–44.

Taori, R.; Gulrajani, I.; Zhang, T.; Dubois, Y.; Li, X.;
Guestrin, C.; Liang, P.; and Hashimoto, T. B. 2023. Alpaca:
A strong, replicable instruction-following model. Stanford
Center for Research on Foundation Models. https://crfm.
stanford. edu/2023/03/13/alpaca. html, 3(6): 7.

Team, G.; Mesnard, T.; Hardin, C.; Dadashi, R.; Bhupati-
raju, S.; Pathak, S.; Sifre, L.; Rivière, M.; Kale, M. S.; Love,
J.; et al. 2024. Gemma: Open models based on gemini re-
search and technology. arXiv preprint arXiv:2403.08295.

Torrey, L.; and Shavlik, J. 2010. Transfer Learning. In
Handbook of research on machine learning applications and
trends: algorithms, methods, and techniques, 242–264. IGI
global.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; Bikel, D.; Blecher, L.; Ferrer, C. C.; Chen, M.; Cucu-
rull, G.; Esiobu, D.; Fernandes, J.; Fu, J.; Fu, W.; Fuller, B.;
Gao, C.; Goswami, V.; Goyal, N.; Hartshorn, A.; Hosseini,
S.; Hou, R.; Inan, H.; Kardas, M.; Kerkez, V.; Khabsa, M.;
Kloumann, I.; Korenev, A.; Koura, P. S.; Lachaux, M.-A.;
Lavril, T.; Lee, J.; Liskovich, D.; Lu, Y.; Mao, Y.; Martinet,
X.; Mihaylov, T.; Mishra, P.; Molybog, I.; Nie, Y.; Poul-
ton, A.; Reizenstein, J.; Rungta, R.; Saladi, K.; Schelten, A.;
Silva, R.; Smith, E. M.; Subramanian, R.; Tan, X. E.; Tang,
B.; Taylor, R.; Williams, A.; Kuan, J. X.; Xu, P.; Yan, Z.;
Zarov, I.; Zhang, Y.; Fan, A.; Kambadur, M.; Narang, S.; Ro-
driguez, A.; Stojnic, R.; Edunov, S.; and Scialom, T. 2023.
Llama 2: Open Foundation and Fine-Tuned Chat Models.
arXiv preprint arXiv:2307.09288.

Wang, Y.; Kordi, Y.; Mishra, S.; Liu, A.; Smith, N. A.;
Khashabi, D.; and Hajishirzi, H. 2023. Self-Instruct: Align-
ing Language Models with Self-Generated Instructions. In
Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics, 13484–13508.

Wei, J.; Bosma, M.; Zhao, V.; Guu, K.; Yu, A. W.; Lester, B.;
Du, N.; Dai, A. M.; and Le, Q. V. 2022. Finetuned Language

Models are Zero-Shot Learners. In International Conference
on Learning Representations.

Wei, J.; and Zou, K. 2019. EDA: Easy Data Augmentation
Techniques for Boosting Performance on Text Classification
Tasks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing.

Yin, C.; Qian, B.; Cao, S.; Li, X.; Wei, J.; Zheng, Q.; and
Davidson, I. 2017. Deep Similarity-Based Batch Mode Ac-
tive Learning with Exploration-Exploitation. In 2017 IEEE
International Conference on Data Mining, 575–584.

Zellers, R.; Holtzman, A.; Bisk, Y.; Farhadi, A.; and Choi,
Y. 2019. HellaSwag: Can a Machine Really Finish Your
Sentence? In Annual Meeting of the Association for Com-
putational Linguistics.

Zhang, S.; Dong, L.; Li, X.; Zhang, S.; Sun, X.; Wang, S.;
Li, J.; Hu, R.; Zhang, T.; Wu, F.; et al. 2023. Instruction Tun-
ing for Large Language Models: A Survey. arXiv preprint
arXiv:2308.10792.

Zheng, C.; Yin, F.; Zhou, H.; Meng, F.; Zhou, J.; Chang,
K.-W.; Huang, M.; and Peng, N. 2024. On prompt-driven
safeguarding for large language models. In Forty-first Inter-
national Conference on Machine Learning.

Appendix

Table 3: Overview of the training hyterparameter

Hyperparameter Value

Learning rate 2 · 10−5

Weight decay 0
Warmup ratio 0.03
Batch size 16
of epoch 3
Max length 512

Seed instruction Seed score

"instruction": "Complete the paragraph given its prefix."
"input": "During 2021, interest and investment infintech
grew significantly in many regions of the world \u2014its
scopebroadening well-beyond its early definition."
"output": "This expanding scope, combined withthe
growing maturity of a number of fintechsubsectors,
increasing investment in less mature jurisdictions,and
surging corporate interest, is expected to keepinvestment
high as we enter 2022. Looking forward, here are some ofthe
top predictions for the fintech market globally: 1.Growing
numberof banks will offer embedded solutions; 2. Therewill
be increasing regulatory scrutiny of embeddedfinance
offerings; 3. Fintechs will focus on branding themselvesas
dataorganizations; 4. ESG-focused fintechs will have abig
growth trajectory; 5. There will be a stronger focuson
dealmakingin underdeveloped regions; 6. Unicorn statuswill
lose some of lustre in developed markets, remain keyin
emergingones."

0.592

"instruction": "Generate the regular expression based on the
description.",
"input": "Description: matching strings that start with
QXPEHUV�DQG�HQG�ZLWK�VSDFH�³\
"output": "^[0-9].*\\s$"}], "

0.618

"instruction": "Sort the given list ascendingly."
"input": "List: [10, 2, 5, -4, 92, 101]"
"output": "[-4, 2, 5, 10, 92, 101]"

0.624

Fig. 10: Low-scored seed instructions

Hyperparameter Setting

We performed instruction tuning on LLaMA-3-8B using the
hyperparameters listed in Table 3. All four models we tuned:
Llama-3-8B + SEDI-INSTRUCT with Llama-3-8B-Instruct
and ChatGPT API and Llama-3-8B + Self-Instruct with
Llama-3-8B-Instruct and ChatGPT API. These four models
are trained using the same hyperparameter settings.

Seed Instruction Analysis According to Seed Score

Fig. 10 and Fig. 11 illustrate the example of seed instruc-
tions based on their seed scores, which are low and high,
respectively. The low-scoring seed instructions in Fig. 10
focus on technical and mechanical tasks, such as text com-
pletion, regular expression generation, and number sorting.
In contrast, the high-scoring seed instructions in Fig. 11 in-
volve tasks that require a creative and humanistic approach,
such as questioning stereotypes, discussing natural phenom-
ena, and writing recommendation letters. The results suggest

Seed instruction Seed score

"instruction": "Describe a situation in which thegiven
stereotypecan harm you."
"input": "\"All Asians are smart!\""
"output": "Imagine you're a small child of Asian descent.
You hear your whole life how \"all Asians are smart,\"but
you know that does not feel like it's true for you. You havea
hardtime in school. Reading is difficult. Math is impossible.
Everyonearound you seems to pressure you because youare
supposedto be \"smart.\" Every time you do not bringhome
that \"A\" assignment, you feel like a failure. Like youalone
missedout on the gene that makes \"all Asians smart.\"\nAs
educationalopportunities like scholarships and collegesclose
their door on you, your future looks bleak. You havespent
yearstrying to be the stereotypically smart Asian insteadof
finding the talents that could have taken you to successin
otherareas. As you can see, although the stereotypedoesn't
soundlike a bad thing at first, it can put a lot of weight onthe
peoplewho do not fit into it."

0.810

"instruction": "Explain to me why a natural phenomenon
happen."
"input": "Thunder."
"output": "Thunder is the sound made by lightning.
Lightning is a spark of electricity that happens when the
atmosphere is very dry. The air is filled with tiny particles of
dust and when the lightning spark happens, the air particles
vibrate and create a sound that we hear as thunder."

0.809

"instruction": "Write a recommendation letter given the
student's achievement."
"input": "Achievement: \n- GPA 3.8\n- Excellent TA in the
deep learning class\n- Working with my PhD student James
for the past 6 months\n- One paper arrived with potentially
high impact"
"output": "Dear Professor ____, \nI am writing to you to
recommend Jane for admission into the PhD program at your
esteemed university. Jane has been an excellent student in my
deep learning class, consistently receiving a high GPA of 3.8.
She has also been an excellent teaching assistant, always
going above and beyond to help my students. Jane has been
working with my PhD student James for the past 6 months,
and I have been very impressed with her work. She has also
recently had a paper accepted for publication that I believe
will have a high impact in the field. Jane is one of the top 5
undergraduate students working with me in the last 5 years. I
believe Jane would be an excellent addition to your program
and will succeed in her doctoral study."

0.801

Fig. 11: High-scored seed instructions

that seeds with characteristics similar to those in Fig. 11 may
be more effective for generating diverse data where context
comprehension and creativity are crucial.

Detailed Model Information

Table 4 summarizes each model’s characteristics, including
the volume and method of instruction data used during train-
ing and the additional techniques employed to enhance the
model’s performance.

The Llama-3-8B + Self-Instruct and Llama-3-8B + SEDI-
INSTRUCT models were trained with 30,164 instructions
collected through their respective data generation frame-
works without additional training techniques. Falcon-7B-
Instruct stands out with 250 million tokens of synthesized
data combined with the manual collection but does not
employ RLHF or SFT. On the other hand, Gemma-7B-

Table 4: Detailed model information

Dataset
scale

Instruction
collection
method

Additional
training

techniques

Llama-3-8B
-Instruct

Over 10M
instructions

Manual
collection

RLHF, SFT

Llama-3-8B
+ Self-Instruct

30,164
instructions

Self-Instruct None

Llama-3-8B
+ SEDI-INSTRUCT

30,164
instructions

SEDI-INSTRUCT None

Falcon-7B
-Instruct

250M tokens
Synthesized data

+ manual collection
None

Gemma-7B
-Instruct

Not publicly
disclosed

Synthesized data
+ manual colleciton

RLHF, SFT

Instruct’s training data volume remains undisclosed, al-
though it similarly uses synthesized data and manual col-
lection and is further refined using RLHF and SFT.

Detailed benchmark

Table 5 presents detailed information on benchmarks that in-
clude subgroup evaluations, as referenced in the benchmark
evaluation results of Table 1. Similar to the results in Ta-
ble 5, the Llama-3-8B + SEDI-INSTRUCT model does not
fall behind in overall performance. This is noteworthy con-
sidering that the data collection costs for this model were
significantly lower compared to other models.

Used Prompts

Fig. 12 shows all the prompts we used in the paper. An in-
struction generation prompt is used to generate the instruc-
tions. Seed instructions are appended to this prompt by the
first three tasks from a List of 20 tasks and then fed to the
instruction-generating model. Llama-2 default prompt is de-
signed to mitigate the risk of generating harmful content
by guiding the model to refuse to answer unsafe queries.
For the competitive evaluation, we use the competitive eval-
uation prompt. Each answer of the models is filled in the
{answer 1} or {answer 2}.

Table 5: Detailed benchmark results of MMLU and ARC

Groups Llama-3-8B-Instruct Llama-3-8B + Self-Instruct Llama-3-8B + SEDI-INSTRUCT Falcon-7B-Instruct Gemma-7B-Instruct

MMLU 65.7 56.5 56.6 25.1 50.2

STEM 56.5 47.5 49.3 23.1 43.0
Humanities 60.4 51.0 49.8 24.9 44.7
Social sciences 76.6 66.6 66.7 24.2 58.3
Other 72.2 64.1 64.1 28.2 44.7

ARC 72.2 67.7 69.3 62.0 66.3

ARC challenge 53.2 47.7 49.8 40.1 47.3
ARC easy 81.2 77.5 79.0 72.7 75.6

Instruction generation prompt Ë^�Ýá~�Ýá�C��Ý�^Ýý^T�Ý�{Ý©/�*ÝáÝ���Ý^�ÝÆÄÝ�/¦�~��Ý�á�CÝ/U��~�ý�/^U�FÝ¦*���Ý�á�CÝ
/U��~�ý�/^U�Ý©/HHÝü�Ý /¦�UÝ�^ÝáÝB�¦ÝT^��HÝáU�Ý©�Ý©/HHÝ�¦áH�á��Ý�*�ÝB�¦ÝT^��HÝ�^~Ýý^T{H��/U Ý
�*�Ý/U��~�ý�/^U�FÝI�~�Ýá~�Ý�*�Ý~�}�/~�T�U��H

ÅFÝ¦~¯ÝU^�Ý�^Ý~�{�á�Ý�*�Ý¦�~üÝ�^~Ý�áý*Ý/U��~�ý�/^UÝ�^ÝTá®/T/¸�Ý�/¦�~�/�¯F
ÆFÝ¦*�ÝHáU �á �Ý����Ý�^~Ý�*�Ý/U��~�ý�/^UÝáH�^Ý�*^�H�Ýü�Ý�/¦�~��FÝ@^~Ý�®áT{H�GÝ¯^�Ý�*^�H�Ý
ý^Tü/U�Ý}����/^U�Ý©/�*Ý/T{�~á�/¦�Ý/U��~�ý/�^U�F
ÇFÝ¦*�Ý�¯{�Ý^�Ý/U��~�ý�/^U�Ý�*^�H�Ýü�Ý�/¦�~��FÝ¦*�ÝH/��Ý�*^�H�Ý/UýH���Ý�/¦�~��Ý�¯{��Ý^�Ý
�á�C�ÝH/C�Ý^{�Ue�U���Ý �U�~á�/^UGÝýHá��/�/ýá�/^UGÝ��/�/U GÝ��ýF
ÈFÝ�ÝB�¦ÝHáU �á �ÝT^��HÝ�*^�H�Ýü�ÝáüH�Ý�^Ýý^T{H���Ý�*�Ý/U��~�ý�/^UFÝ@^~Ý�®áT{H�GÝ�^ÝU^�Ýá�CÝ
�*�Ýá��/��áU�Ý�^Ýý~�á��ÝáU¯Ý¦/��áHÝ^~Ýá��/^Ý^��{��FÝ@^~ÝáU^�*�~Ý�®áT{H�GÝ�^ÝU^�Ýá�CÝ�*�Ý
á��/��áU�Ý�^Ý©áC�Ý¯^�Ý�{Ýá�ÝÉ{TÝ^~Ý���ÝáÝ~�T/U��~Ýü�ýá���Ý/�ÝýáUU^�Ý{�~�^~TÝáU¯Ýáý�/^UF
ÉFÝ¦*�Ý/U��~�ý�/^U�Ý�*^�H�Ýü�Ý/UÝ*U H/�*F
ÊFÝ¦*�Ý/U��~�ý�/^U�Ý�*^�H�Ýü�ÝÅÝ�^ÝÆÝ��U��Uý��ÝH^U FÝ*/�*�~ÝáUÝ/T{�~á�/¦�Ý��U��Uý�Ý^~ÝáÝ
}����/^UÝ/�Ý{�~T/����F
ËFÝË^�Ý�*^�H�Ý �U�~á��ÝáUÝá{{~^{~/á��Ý/U{��Ý�^Ý�*�Ý/U��~�ý�/^UFÝ¦*�Ý/U{��Ý�/�H�Ý�*^�H�Ý
ý^U�á/UÝáÝ�{�ý/�/ýÝ�®áT{H�Ý{~^¦/���Ý�^~Ý�*�Ý/U��~�ý�/^UFÝN�Ý�*^�H�Ý/U¦^H¦�Ý~�áH/��/ýÝ�á�áÝ
áU�Ý�*^�H�ÝU^�Ýý^U�á/UÝ�/T{H�Ý{Háý�*^H��~�FÝ¦*�Ý/U{��Ý�*^�H�Ý{~^¦/��Ý��ü��áU�/áHÝý^U��U�Ý�^Ý
TáC�Ý�*�Ý/U��~�ý�/^UÝý*áHH�U /U Ýü��Ý�*^�H�Ý/��áHH¯ÝU^�Ý�®ý���ÝÅÄÄÝ©^~��F
ÌFÝp^�ÝáHHÝ/U��~�ý�/^U�Ý~�}�/~�Ý/U{��FÝ@^~Ý�®áT{H�GÝ©*�UÝáÝ/U��~�ý�/^UÝá�C�Ýáü^��Ý�^T�Ý
 �U�~áHÝ/U�^~Tá�/^UGÝy©*á�Ý/�Ý�*�Ý*/ *���Ý{�áCÝ/UÝ�*�Ý©^~H�yGÝ/�Ý/�ÝU^�ÝU�ý��á~¯Ý�^Ý{~^¦/��Ý
áÝ�{�ý/�/ýÝý^U��®�FÝNUÝ�*/�Ýýá��GÝ©�Ý�/T{H¯Ý{��Ýy�U^/U{���yÝ/UÝ�*�Ý/U{��Ý�/�H�F
ÍFÝ¦*�Ý^��{��Ý�*^�H�Ýü�ÝáUÝá{{~^{~/á��Ý~��{^U��Ý�^Ý�*�Ý/U��~�ý�/^UÝáU�Ý�*�Ý/U{��FÝoáC�Ý��~�Ý
�*�Ý^��{��Ý/�ÝH���Ý�*áUÝÅÄÄÝ©^~��F

e/��Ý^�ÝÆÄÝ�á�C�H

Llama-2 default prompt Ë^�Ýá~�ÝáÝ*�H{��HGÝ~��{�ý���HÝáU�Ý*^U���Ýá��/��áU�FÝ�H©á¯�ÝáU�©�~Ýá�Ý*�H{��HH¯Ýá�Ý{^��/üH�GÝ
©*/H�Ýü�/U Ý�á��FÝË^�~ÝáU�©�~�Ý�*^�H�ÝU^�Ý/UýH���ÝáU¯Ý*á~T��HGÝ�U��*/ýáHGÝ~áý/��GÝ��®/��GÝ
�^®/ýGÝ�áU �~^��GÝ^~Ý/HH� áHÝý^U��U�FÝ�H�á��Ý�U��~�Ý�*á�Ý¯^�~Ý~��{^U���Ýá~�Ý�^ý/áHH¯Ý
�Uü/á���ÝáU�Ý{^�/�/¦�Ý/UÝUá��~�FÝ

N�ÝáÝ}����/^UÝ�^��ÝU^�ÝTáC�ÝáU¯Ý��U��GÝ^~Ý/�ÝU^�Ý�áý��áHH¯Ýý^*�~�U�GÝ�®{Há/UÝ©*¯Ý/U���á�Ý^�Ý
áU�©�~/U Ý�^T��*/U ÝU^�Ýý^~~�ý�FÝN�Ý¯^�Ý�^Uz�ÝCU^©Ý�*�ÝáU�©�~Ý�^ÝáÝ}����/^UGÝ{H�á��Ý�^Uz�Ý
�*á~�Ý�áH��Ý/U�^~Tá�/^UF

Competitive evaluation prompt�¯���TÝ�~^T{�H
Ë^�Ýá~�ÝáÝ*�H{��HÝáU�Ý{~�ý/��Ýá��/��áU�Ý�^~Ýý*�ýC/U Ý�*�Ý}�áH/�¯Ý^�Ý�*�ÝáU�©�~F

­��~Ý�~^T{�H
]�����/^U^
]¦*�Ý��á~�Ý^�Ý���/��áU�ÝÅz�Ý�U�©�~^
[áU�©�~lÅ\
]¦*�Ý*U�Ý^�Ý���/��áU�ÝÅz�Ý�U�©�~^
]¦*�Ý��á~�Ý^�Ý���/��áU�ÝÆz�Ý�U�©�~^
[áU�©�~lÆ\
]¦*�Ý*U�Ý^�Ý���/��áU�ÝÆz�Ý�U�©�~^

Å�Ý©^�H�ÝH/C�Ý�^Ý~�}����Ý¯^�~Ý����üáýCÝ^UÝ�*�Ý{�~�^~TáUý�Ý^�Ý�©^Ý�NÝá��/��áU��Ý/UÝ~��{^U��Ý
�^Ý�*�Ý���~Ý}����/^UÝ�/�{Há¯��Ýáü^¦�FWU�H�á��~á��Ý�*�Ý*�H{��HU���GÝ~�H�¦áUý�GÝáýý�~áý¯GÝ
H�¦�HÝ^�Ý���á/H�Ý^�Ý�*�/~Ý~��{^U���FÝ*áý*Ýá��/��áU�Ý~�ý�/¦��ÝáUÝ^¦�~áHHÝ�ý^~�Ý^UÝáÝ�ýáH�Ý^�Ý
ÅÝ�^ÝÅÄGÝ©*�~�ÝáÝ*/ *�~Ý�ý^~�Ý/U�/ýá���Ýü����~Ý^¦�~áHHÝ{�~�^~TáUý�FWU�H�á��Ý�/~��Ý^��{��ÝáÝ
�/U H�ÝH/U�Ýý^U�á/U/U Ý^UH¯Ý�©^Ý¦áH���Ý/U�/ýá�/U Ý�*�Ý�ý^~��Ý�^~Ý���/��áU�ÝÅÝáU�ÝÆGÝ
~��{�ý�/¦�H¯FÝ¦*�Ý�©^Ý�ý^~��Ýá~�Ý��{á~á���Ýü¯ÝáÝ�{áý�FÝNUÝ�*�Ý��ü��}��U�ÝH/U�GÝ{H�á��Ý
{~^¦/��ÝáÝý^T{~�*�U�/¦�Ý�®{HáUá�/^UÝ^�Ý¯^�~Ý�¦áH�á�/^UGÝá¦^/�/U ÝáU¯Ý{^��U�/áHÝü/á�ÝáU�Ý
�U��~/U Ý�*á�Ý�*�Ý^~��~Ý/UÝ©*/ý*Ý�*�Ý~��{^U���Ý©�~�Ý{~���U���Ý�^��ÝU^�Ýá���ý�Ý¯^�~Ý
>�� T�U�Fy

Fig. 12: All of the used prompts

