
This paper is included in the Proceedings of the
15th USENIX Symposium on Operating Systems

Design and Implementation.
July 14–16, 2021
978-1-939133-22-9

Open access to the Proceedings of the
15th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX.

Modernizing File System
through In-Storage Indexing

Jinhyung Koo, Junsu Im, Jooyoung Song, and Juhyung Park, DGIST;
Eunji Lee, Soongsil University; Bryan S. Kim, Syracuse University;

Sungjin Lee, DGIST
https://www.usenix.org/conference/osdi21/presentation/koo

Modernizing File System through In-Storage Indexing

Jinhyung Koo
DGIST

Junsu Im
DGIST

Jooyoung Song
DGIST

Juhyung Park
DGIST

Eunji Lee
Soongsil University

Bryan S. Kim
Syracuse University

Sungjin Lee
DGIST

Abstract
We argue that a key-value interface between a file system and
an SSD is superior to the legacy block interface by presenting
KEVIN. KEVIN combines a fast, lightweight, and POSIX-
compliant file system with a key-value storage device that
performs in-storage indexing. We implement a variant of a
log-structured merge tree in the storage device that not only in-
dexes file objects, but also supports transactions and manages
physical storage space. As a result, the design of a file system
with respect to space management and crash consistency is
simplified, requiring only 10.8K LOC for full functionality.
We demonstrate that KEVIN reduces the amount of I/O traf-
fic between the host and the device, and remains particularly
robust as the system ages and the data become fragmented.
Our approach outperforms existing file systems on a block
SSD by a wide margin – 6.2× on average – for metadata-
intensive benchmarks. For realistic workloads, KEVIN im-
proves throughput by 68% on average.

1 Introduction

Files and directories are the most common way of abstracting
persistent data. Traditionally, storage devices like hard disk
drives simply export an array of fixed-sized logical blocks, and
file systems abstract these blocks into files and directories con-
taining user data by managing the storage space (e.g., bitmaps)
and the locations for the data (e.g., inodes). Whenever files
and directories are created or deleted, the file-system metadata,
such as bitmaps and inodes, must be retrieved and updated
to reflect the newly updated state of the system [3]. Since
these persistent data structures must remain consistent, file
systems need to employ techniques like journaling to ensure
that they are atomically updated [2, 35, 38, 47]. Considering
all of these responsibilities, file systems are highly intricate
and performance-critical software [27, 37, 45].

However, the architecture of complex and sophisticated
file systems that sits on top of storage devices with a simple
array-of-blocks interface is ill-suited for today’s technology
trends. Before processing the actual file operations, file sys-

 0

 5

 10

 15

 20

 25

 30

TAMMUZ

INTEL
960EVO

960PRO

970PRO

PM983

not scalable}

N
o
rm

a
liz

e
d
 I
O

P
S

Rand-R/W (50:50)

Varmail

rmdir

creat

(a) EXT4 performance

 0

 30

 60

 90

TAMMUZ

INTEL
960EVO

960PRO

970PRO

PM983

O
u

ts
ta

n
d

in
g

 r
e

q
u

e
s
ts

 510

 540
Rand-R/W

Others

(b) Number of outstanding requests

Figure 1: The performance of the EXT4 file system with
respect to SSD performance. With the current block interface,
the file system exhibits poor performance scalability under
metadata and fsync intensive workloads.

tems have to perform extra operations on on-disk metadata.
This not only involves many extra I/Os and data transfers over
the host interface, but also causes serious delays owing to I/O
ordering [6,7,52] and journaling [26,32]. The end of Moore’s
Law [50] means that the performance of file systems can no
longer scale with faster CPUs. Moreover, the rise of fast stor-
age devices like solid-state drives (SSDs) further exacerbates
this problem, shifting the system bottleneck from the device
to the host-side software I/O stack.

Figure 1 illustrates this problem by measuring the perfor-
mance of the EXT4 file system as the performance of the
underlying SSD increases: TAMMUZ is the slowest one, while
PM983 is the fastest. We run three benchmarks: creat and
rmdir as the metadata-intensive workload and Varmail [48]
as the fsync-intensive workload. As a performance indicator
for the six SSDs, we also run Rand-R/W that issues random
reads/writes to the SSD which is directly mounted to the
host without the file system. The measured throughput in Fig-
ure 1(a) is normalized to that of the slowest SSD (TAMMUZ).
Under Rand-R/W without any metadata operations, the I/O
performance increases greatly by up to 24.8× as the SSD
gets faster. However, under creat and rmdir, the file sys-
tem’s performance increases by only 1.6× and 2.0×, respec-
tively. Similarly, for Varmail, the measured throughput scales
poorly from TAMMUZ to 970PRO (the second fastest SSD);
the 14.0× improvement for PM983 is only possible because

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 75

the SSD ignores fsync1. Figure 1(b) shows the number of
outstanding requests (measured by iostat) averaged across
the metadata- and fsync-intensive workloads, and compares
it with that of Rand-R/W. For Rand-R/W, the host system can
fully utilize the performance of the underlying SSD by send-
ing a sufficient number of I/Os. Thus, the I/O performance
is mostly decided by the SSD performance. However, under
the metadata- and fsync-intensive workloads, the file system
fails to submit large enough I/Os to fully drive the SSD, in
particular when the underlying SSD is fast, which results in
much lower throughputs. These results indicate that we can-
not increase the overall I/O performance just by improving
the performance of the underlying SSD.

To alleviate this problem, we believe it is necessary to
rethink the storage interface between the file system and the
storage device; an independent improvement at either the file
system or the device cannot solve the issue imposed by the
legacy block interface. We are not the first to put forward this
argument: many prior works have investigated extending the
block interface [6, 16] or exposing a file object interface [23].
However, these either have a limited scope (e.g., OPTR [6]
on ordering and Janus [16] on fragmentation) or require a
significant amount of resources (e.g., DevFS [23] with respect
to memory and CPU) that limit their effectiveness.

In this work, we argue that a key-value interface between
the file system and the SSD is a better choice over the legacy
interface for three primary reasons. First, it is simple and well-
understood: it is widely used not only in databases (e.g., key-
value stores and backend storage engines for databases [12]),
but also as a common programming language construct
(e.g., dict in Python). Second, there is great interest in the
industry with the development of KV-SSD prototypes [22]
and the ratification of key-value storage APIs [46]. Third, the
key-value interface is more expressive than the narrow block
interface and makes exposing atomicity to support transac-
tions considerably easier. This further enhances application
programmability with respect to persistence, as well as, facili-
tates attaining the elusive goal of syscall atomicity.

To demonstrate the effectiveness of the key-value storage
interface, we design KEVIN. KEVIN consists of KEVINFS
(key-value interfacing file system), which translates the user’s
files and their inode-equivalent metadata into key-value ob-
jects, and KEVINSSD (key-value indexed solid-state drive),
which implements a novel in-storage indexing of key-value
objects in the SSD’s physical address space. We observe that
KEVIN has the following quantitative advantages over the
traditional file system on a block SSD. First, KEVIN signifi-
cantly reduces the amount of I/O transfers between the host
and the device. On the other hand, a file system on a block
device must access its many on-disk data structures before the
user’s file, incurring high I/O amplification. Second, KEVIN
simplifies crash consistency without needing to employ jour-

1A number of enterprise-grade SSDs ignore fsync by relying on super-
capacitors to guarantee durability [52].

naling. KEVINSSD supports transactions across key-value
SETs and DELETEs that make it easy to maintain a consistent
and persistent state. Lastly, KEVIN is resilient to performance
degradation caused by file fragmentation. As a traditional file
system ages, its performance drops significantly as its data is
dispersed across a fragmented block address space. In KEVIN,
however, all persistent data are partially sorted and indexed
through a variant of a log-structured merge (LSM) tree that
prevents file fragmentation.

We implement KEVINFS in the Linux kernel v4.15 and
KEVINSSD on an FPGA-based development platform. We
measure our system using both microbenchmark and real-
world applications, and compare it to EXT4 [49], XFS [47],
BTRFS [40], and F2FS [25]. Our experiments reveal that on
average, KEVIN increases system throughput by 6.2× and
reduces I/O traffic by 74% for metadata-intensive workloads.
These results are further accentuated when the file systems are
aged and files are fragmented, highlighting the long-term ef-
fectiveness of our approach. Across eight realistic workloads
(five benchmarks and three applications), KEVIN achieves
68% higher throughput on average. In summary, this paper
makes the following contributions:
• We propose a novel in-storage indexing technique that elim-

inates the metadata management overhead of file systems
by making the storage capable of indexing data.

• We prototype an SSD controller that exposes KV objects
through the KV interface and optimize the LSM-tree in-
storage indexing engine to efficiently service file system
requests with low overhead.

• We develop a full-fledged in-kernel file system in Linux
that operates over the KV interface, supporting efficient
crash recovery.

• We investigate the effectiveness of KEVIN using micro and
realistic benchmarks. Evaluation results show that KEVIN
significantly improves I/O performance, especially under
metadata-intensive scenarios.

2 Background and Related Work

In this section, we review the traditional block I/O interface,
and discuss how our work relates to prior studies [9, 26, 30,
55]. We then describe the basics of the LSM-tree that are
fundamental to our indexing algorithm.

2.1 Traditional Block I/O Interface
Existing block storage devices expose the block I/O interface
that abstracts underlying storage media as a linear array of
fixed-size logical blocks (e.g., 512 B or 4 KB) and provides
block I/O operations. Internally, they employ a simple form
of in-storage indexing to hide the unreliable and unique prop-
erties of the underlying media. HDDs maintain an indirection
table to handle bad blocks [17]. Flash-based SSDs contain
a flash translation layer (FTL) that maps logical blocks to
physical flash pages through the logical-to-physical (L2P)

76 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

S
S

D
F

S

NAND Flash

L2P Indexing

READ Block I/O Interface

TRIM

FS Application

POSIX Interface

Virtual File System

NAND Flash

Embedded File System

FS Application

POSIX-like

Interface

KV Applications

NAND Flash

KV Interface

POSIX Interface

NAND Flash

Ext. L2P Journal

FS Application FS Application

NAND Flash

File & Dir
Indexing

File to Object
Mapping

Transaction Mgmt.

VFS to KV
Translation

Transaction
Support

FSLib KVLib

open()

read()

write()

«

Bitmap
Inode

pointer
Dir.

entries Journal

Virtual File System

Bitmap
Inode

pointer
Dir.

entries
Journal
Mgmt.

Virtual File System

KV KV

KV

KV Indexing

KV KV

KV

KV Indexing

S
S

D
F

S

POSIX Interface

GET()

SET()

ITERATE()

«

Ext. KV Interface

D
e
v

F
S

K
V

-S
S

D

K
E

V
I
N

S
S

D
K

E
V

I
N

F
S

(a) Traditional Block Indexing (b) Extended Block Indexing (c) File Indexing (d) Key-value Indexing (e) Proposed KEVIN

Ext.

Interface

Figure 2: Categories of in-storage indexing technologies

indexing table, so as to emulate over-writable media over
out-of-place updatable NAND devices and to exclude bad
blocks [1] (see Figure 2(a)). To virtualize files and directories
over a block device, file systems maintain various on-disk data
structures (e.g., disk pointers, bitmaps, and directory entries).
However, the management of on-disk data structures is costly,
as it involves moderate extra I/O traffic, requires journaling
to support consistency, and is vulnerable to fragmentation.

2.2 Review of In-Storage Indexing
Extended block I/O interface. There have been various ap-
proaches to enhancing the block I/O interface and the naive
L2P-based indexing. Many have suggested custom interfaces
with transactional SSDs to ensure consistency at a low cost.
While specific designs differ, they commonly aim to offload a
journaling mechanism to storage so that a storage controller
can keep track of journaling records to avoid double-writing
during journal checkpointing [9, 21, 26, 36] (see Figure 2(b)).
Some have proposed an order-preserving interface and corre-
sponding L2P indexing design to shorten I/O ordering delays
for journaling [6]. Resolving fragmentation of disk point-
ers (e.g., EXT4’s extents) at the storage hardware level was
presented by [16]. Those measures have alleviated specific
problems (e.g., journaling, ordering, and fragmentation) but
have been unable to fundamentally eliminate I/O overhead
associated with file-system metadata. And, since the indi-
vidual strategies have specific designs, applying all of them
collectively is also quite difficult.

File indexing & interface. DevFS is a local file system
completely embedded within the storage hardware [23] (see
Figure 2(c)), DevFS exposes the POSIX interface to a user-
level application so that the application can access a file with-
out trapping into and returning from the OS. Since all the
metadata operations are performed inside the storage device,
I/O stacks and communication overhead can be completely
removed. However, moving the entire file system into the stor-
age device has serious drawbacks, such as requiring costly
hardware resources and providing limited file system func-
tionalities. As discussed in [23], it is in fact difficult to run
a full-fledged file system without adding large DRAM and
additional CPU cores to the storage controller. This approach
also limits the implementation of advanced file system fea-

tures, such as snapshot and deduplication. Firmware upgrades
to provide new features add maintenance costs.

Key-value indexing & interface. Kinetic HDD and KV-
SSD implement parts of a key-value store engine in the stor-
age hardware to accelerate KV clients [13] (see Figure 2(d)).
KV-SSDs expose variable-size objects, each of which has a
string key, and provide KV operations to manipulate objects.
Samsung’s KV-SSD indexes KV pairs using the hash because
of its simplicity [22], but it suffers from tail latency and poor
range query speed [41]. To address this, LSM-tree-based in-
dexing is proposed [18]. Some go a step further by showing
that the KV interface can be extended to support compound
commands and transactions [24]. But, its FTL design was not
explained in detail. Needless to say, KV-SSDs speed up KV
clients by doing KV indexing on the storage side. However,
since they target KV clients, existing KV interfaces and al-
gorithms are insufficient to index files and directories. For
example, Samsung’s KV-SSD device based on the hash shows
(i) slow iteration performance, (ii) slow sequential perfor-
mance (= random), and (iii) slow performance on small-value
KV pairs. The atomicity and durability support is limited to
only a single KV object, which makes it difficult to remove
file-system journaling. As a result, naively implementing file
systems over KV-SSDs without fundamental design and in-
terface changes may not promise performance improvement.

KEVIN. KEVIN is the natural extension of existing KV-
SSDs. While maintaining a lean indexing architecture for a
storage controller, our in-storage engine based on an LSM-tree
is designed to efficiently index files and directories, together
with transaction support to remove file-system journaling
(see Figure 2(e)). Over such a KV storage device, we present
a new POSIX-compatible file-system design that translates
VFS calls and maps files and directories to KV objects. In
other words, KEVIN splits the file system into the OS and the
device, proposing an extended KV interface to glue the two
components efficiently.

2.3 File System over Key-value Store
There have been attempts to run file systems over KV
stores [19, 39]. The BY-tree and LSM-tree algorithms often
used in KV stores are write-optimized, so the file system’s
metadata operations or small file writes are handled efficiently.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 77

K2V Index

Persistent Storage

DRAM
Memtable

L1

L2

Lh

«

Compaction

(merge & sort) Value Log

ValueValue Pointer GC

Figure 3: Overall architecture of LSM-tree

BetrFS in particular employs full-path indexing to improve
directory scanning performance. It also adopts zones [56],
range deletion [56], and tree-surgery [57] techniques to im-
prove rename and directory deletion operations. Those stud-
ies, however, still rely traditional file systems (e.g., EXT4) as
a data store and are based on in-kernel (e.g., TokuDB [19])
or user-level (e.g., LevelDB [39]) KV stores. This host-side
indexing inevitably causes I/O traffic between the host and
the device. The write-ahead logging (WAL) to ensure con-
sistency with KV objects also incurs double-writes like the
journaling of traditional file systems. To avoid this, BetrFS
employs late-binding journaling for sequential writes [56]. In
addition, TableFS uses EXT4 as a file store to keep big files,
so it suffers from fragmentation as the file system ages.

2.4 LSM-Tree Basics

We explain the basics of LSM-tree algorithms [31]. The LSM-
tree, as shown in Figure 3, maintains multiple levels, !1, !2,
..., !ℎ−1, and !ℎ , where ℎ is a tree height. Levels are organized
such that !8+1 is) times larger than !8 . Each level contains
unique KV objects sorted by the key. However, the key range
of one level may overlap with those of other levels.

A KV object is first written to a DRAM-resident memtable.
When the memtable becomes full, buffered KV pairs are
flushed out to !1 in persistent storage. The LSM-tree sequen-
tially writes buffered KV objects to free space in !1. Once
!1 becomes full, KV pairs of !1 are flushed out to !2 and
similarly, !8 is flushed out to !8+1 when !8 is full. To satisfy
the tree property, when flushing out !8 to !8+1, the LSM-tree
should perform compaction that merges and sorts the KV
objects of !8 and !8+1. The compaction requires many I/Os
since it has to read all KV pairs from two levels, sort them by
the key, and write sorted KV pairs back to the storage.

To reduce compaction costs, one suggests managing keys
and values separately [28]. It appends a value of a KV object
to a value log; only a key and a value pointer locating a corre-

sponding value in the log are put into the tree. In this paper, a
pair of <key, value pointer> is called a K2V index. Because
object values do not need to be read during compaction, com-
paction costs can be greatly reduced, especially when a value
is larger than a key. The value log contains obsolete values
that must be reclaimed by garbage collection.

For retrieving a KV object, the LSM-tree may look up mul-
tiple levels, which involves extra reads due to the fact that
the key ranges of the levels can overlap. If a candidate KV
object fetched from !8 is not matched with a wanted one, we
should move on to !8+1 and look up another candidate. To
reduce reads for level lookups, bloom filters are used. Ac-
cording to [11], the number of extra reads can be reduced to
around one. Once a desired KV object is found, the LSM-tree
returns a value to the client because a key and its value are
read together. If keys and values are separated, another read
is required to retrieve its value stored in the value log.

3 Overall Architecture of KEVIN

This section explains the architecture of KEVIN, focusing
particularly on its indexing schema to offload file-system
metadata (inode/data bitmaps, disk pointers, and directory en-
tries) to storage. We design two major components of KEVIN,
KEVINFS and KEVINSSD, so that they have specific roles:
(i) the mapping of files and directories to KV objects at the
file-system level (§3.1); (ii) the indexing of KV objects in
flash using the LSM-tree at the storage level (§3.2).

Before explaining the details of our system, we explain
the KV interface in Table 1. KEVINSSD exports basic KV
operations, SET, GET, and ITERATE, to read, write, and iterate
over KV objects. SET and GET also support partial reads and
writes that are useful for dealing with micro reads and writes
on a large object. KEVINFS invokes ITERATE repeatedly to
retrieve KV pairs whose keys are lexicographically equal to or
greater than a given pattern. KEVINSSD supports transac-
tion commands, BeginTX, AbortTX, and EndTX, exploited by
KEVINFS to ensure file-system consistency. A (range) dele-
tion command, DELETE, is included to support object deletion
or truncation. The length of an object key is variable, but is
limited to 256 B. Technically, there is no limit to a value size.

3.1 Mapping of File and Directory
KEVINFS uses only three types of KV objects: superblock,
meta, and data objects. A superblock object keeps file system
information. While a meta object stores attributes of a file or a

KV Command Description
GET(TID,key,off,len) Retrieve a value given key; if off and len are given, read len bytes of data at offset off from a value of key
SET(TID,key,off,len,val) Set key to hold data val; if doesn’t exist, create a new one; partially update a value given off and len
DELETE(TID,key,off,len) Delete an object of key; truncate part of a value given off and len
ITERATE(TID,pattern,cnt) Iterate over objects and return at most cnt objects that are lexicographically equal to or greater than pattern
BeginTx(TID), EndTx(TID), AbortTx(TID) Start a new transaction with TID; commit the transaction; abort the transaction, discard changes (see §5.1)

Table 1: Key KV commands supported by KEVIN

78 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

bin/ dev/ home/

(2)

(4) (15)(3)

/

alice/

bob.txt eve/

(50)

(100) (101)

m:2:home/

m:15:alice/

101 0

m:50:eve/

m:50:bob.txt

d:100 �

50 2

15 1

100 32K «

«

«

key

value

«

meta object

data object meta object

meta object

meta object

m:0:/

2 26 «

inode #
meta object

Figure 4: Meta and data objects

directory (e.g., an inode number, size, and timestamps), a data
object holds file data. The sizes of a superblock object and a
meta object are 128 B and 256 B, respectively. Conversely, a
data object can be as large as a file size.

Figure 4 illustrates how files and directories are stored as
the form of KV objects. A regular file consists of a pair with
one part meta object and the other data object. In contrast to
a file, a directory only has a meta object to keep its attributes.
For a regular file, the size field of a meta object represents a file
size; for a directory, it is the total number of subdirectories and
files. All objects are retrieved (GET), stored, or updated (SET)
by KV commands with unique keys. Directory traversals are
supported by ITERATE as well (explained in detail later).

For assigning a key of an object, KEVIN uses two inode-
based key naming rules. Rule #1: a meta object key is a
combination of (i) a prefix ‘m:’, (ii) an inode number of a
parent directory, (iii) a delimiter ‘:’, and (iv) a file or directory
name. Rule #2: a data object key is a combination of (i) a
prefix ‘d:’ and (ii) an inode number of a file. Our naming rules
are based on [39], but is extended to deliver the semantics of
KV objects so that the storage hardware can index them more
efficiently (see §3.2).

Figure 4 shows an example directory tree and associ-
ated KV objects. Consider a file bob.txt in a directory
/home/alice/. The inode numbers of /home/alice/ and
bob.txt are 50 and 100, respectively. According to the
rule #1, the meta object key is m:50:bob.txt. Similarly, fol-
lowing the rule #2, the data object key is d:100. As another
example, consider a directory eve/ in /home/alice/. A di-
rectory has a single meta object only, so a meta object whose
key is m:50:eve/ exists.

KEVINFS has no directory entries, but a list of files
and directories belonging to a specific directory can be re-
trieved by using ITERATE. To list up files and directories in
/home/alice/ whose keys start with m:50:, KEVINFS cre-
ates a new iterator ITERATE(m:50:,2) and sends it to the
storage, which then returns meta objects with the prefix m:50:
(e.g., bob.txt and eve/ in Figure 4). To prevent too many
objects from being fetched at once (which might take so long),
we can specify the maximum object count cnt in the ITERATE

command. In this example, cnt is 2, representing the number
of subdirectories and files in /home/alice/. Traversing an
entire file-system tree is easily implemented. The inode num-
ber of ‘/’ is fixed to 2. KEVINFS retrieves all the files and
directories in ‘/’ with ITERATE(m:2:,26). By repeating the
above steps for directories , it builds up the entire tree.

To efficiently handle small files, KEVINFS packs attributes
and data of a file in a meta object together if their size is
smaller than 4 KB. This reduces I/Os since a small file can be
read or written by one GET or SET to its meta object.

As an alternative to the inode-based indexing, one might
suggest using the full-path indexing [19]. This improves
scan performance when using a KV store based on sorted
algorithms (e.g., BY-trees), as it globally sorts the entire file-
system hierarchy. While this is beneficial on devices with high
seek time such as HDDs, on devices with fast random access
like SSDs, its benefits are diminished. On the other hand, the
inode-based indexing shows good performance on operations
other than directory scans and offers fast directory renaming
without techniques such as zones [56] or tree-surgery [57].
Especially as KEVINSSD performs more efficiently when
key lengths are short (see §3.3), the inode-based indexing that
has shorter key lengths is a more appropriate choice.

3.2 Indexing of KV Objects

KV objects exposed to the file system are managed by our
in-storage indexing engine, KEVINSSD, which makes use
of LSM-tree indexing. KEVINSSD maps KV objects to the
flash, allocating and freeing flash space, and handles read and
write requests on objects which are usually done by an FTL.
In our system, the FTL only does simple tasks (e.g., bad-block
management and wear-leveling). The hardware resources
(e.g., CPU cycles and DRAM) saved by disabling such FTL
features are used to run our indexing algorithm.

Figure 5 shows the architecture of KEVINSSD. For each
level, it maintains a tiny in-memory table (48 MB DRAM
for 1 TB SSD) to keep track of KV objects in the flash. Each
entry of the table has <start key, end key, and pointer>, where
a pointer points to the location of a flash page that holds KV
objects; start and end keys are the range of keys in the page.
Those key ranges can be overlapped on multiple levels. For
fast search operations, all entries are sorted by start keys.

KEVINSSD manages the keys and values of meta and data
objects separately. This is a reasonable choice because a key
size is much smaller than its value size. This is even true for
a small meta object whose value size is 256 B. According to
our analysis, the average length of a meta-object key is 32
B, which is 8× smaller than its value. Since keys and values
are separated, only K2V indices (i.e., <key, value pointer>)
for objects are stored in flash pages, called key-index pages,
which are separated from their values in other flash pages.
Meta and data objects begin with a different prefix (‘m:’ or
‘d:’), so their K2V indices are sorted in different pages.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 79

m:2:var/m:2:bin/d:100:0

Controller DRAM

Flash

L1

L2

Ln d:102:3

m
:2

:v
ar

/

m
:2

:b
in

/

«
m

:2
:d

ev
/

m
:2

:u
sr

/

Value pages½
Directory entries for

/home/

Data

Block

(4-KB)

Start Key

End Key

In-memory index

for key-index pages

NAND page

d
:1

0
0

:1
d

:1
0

0
:0

«

d
:1

0
0

:7

«

d
:1

0
2

:3

Key-index page

¾
Disk pointers for
/home/alice/bob.txt

In
o

d
e

Key Value

«

«

Figure 5: Layout of KV objects in KEVINSSD

Meta object indexing. A meta object key corresponds to a
file or directory name in typical file systems, while meta object
value is equivalent to an inode. Key-index pages for meta
objects thus contain K2V indices, each of which is a pair of
<meta object key, value pointer>. This is similar to a directory
entry, <file or directory name, inode #>, in a directory file.
According to the naming rule #1, K2V indices that belong
to the same parent directory are sorted by the parent’s inode
number and thus are likely to be packed into the same key-
index pages (see 1 in Figure 5).

A list of files and directories belonging to a specific di-
rectory can be retrieved quickly if associated K2V indices
are fully sorted. To get directory entries in /, for example,
KEVINSSD requires one flash read (or a few if directory size
is huge). However, as mentioned in §2, to reach a wanted
key-index page, KEVINSSD should look up multiple levels
of the tree. Moreover, if K2V indices are fragmented across
multiple levels, more than one flash read is required to build
up a complete directory list. We explain how we mitigate this
problem in the storage (§3.3) and the file system levels (§4).

Directory entries are updated efficiently. Existing file sys-
tems read and write a 4 KB block(s) to modify a list of direc-
tory entries. In KEVINSSD, just by writing (SET) or removing
(DELETE) a meta object, we can update directory entries in di-
rectories. This removes the necessity of maintaining directory
files, thereby eliminating data movement costs.

Data object indexing. In contrast to a meta object, a data
object can be very large. Indexing a large object (e.g., 1 GB)
as the form of a single KV pair incurs high I/O overhead when
a small part of it is read or updated. For example, to update
only 512 B of data, KEVINSSD has to read an entire object,
modify it, and write it back to the flash, updating its index in
the tree. To avoid this, KEVINSSD splits a data object into 4
KB subobjects with unique suffixes and manages them as if
they are independent KV pairs. For /home/alice/bob.txt
whose size is 32 KB, its data object is divided into eight 4 KB
subobjects with different suffixes, ‘d:100:0’, ‘d:100:1’, ...,
and ‘d:100:7’, in storage. If a small part of a huge object is
retrieved or updated, only the corresponding subobject needs
to be read from or written to the flash. Please be advised that
there is no additional indirection (or index) for subobjects
because subobject keys are decided by file’s offset.

Since subobject keys and their values are separated, key-
index pages hold K2V indices, each of which is a pair of
<subobject key, pointer>. As one might notice, a K2V in-
dex is like a disk pointer (or extents in EXT4) pointing to a
data block in existing file systems. According to the rule #2,
K2V indices are sorted by file’s inode number and by suf-
fix numbers. Therefore, K2V indices belonging to the same
data object (i.e., the same file) tend to be packed in the same
key-index pages (see 2 in Figure 5).

To retrieve 4 KB data from a data object, KEVINSSD
should look up levels to find a desired key-index page. Once
it is found, KEVINSSD can read a K2V index from the flash
with one page read. Then, actual data are read by referring
to its pointer. Other K2V indices read together are cached in
the controller’s DRAM (see §3.3). This reduces lookup costs
for future requests. This indexing mechanism is similar to the
management of disk pointers (e.g., an extent tree in EXT4).
Existing file systems maintain index blocks that contain point-
ers only, where each pointer points to a data block or another
index block. Before reading file data, index blocks must be
loaded from a disk.

In KEVINSSD, looking for a K2V index for reading data is
done in storage. The update of K2V indices for a data object is
done by writing or deleting a data object via SET and DELETE.
Compared to typical file systems that read and write a 4 KB
block(s) to retrieve and to update disk pointers, KEVINSSD
does not involve any external I/Os to index file data.

3.3 Mitigating Indexing Overhead

As mentioned in §3.2, putting the LSM-tree indexing onto the
storage hardware causes extra I/Os, which never happen in
typical FTLs using a simple L2P indexing table (which is en-
tirely loaded in DRAM). We introduce three main causes that
create internal I/Os and explain how we solve them (see Fig-
ure 6). Note that garbage collection occurs both in KEVIN
and existing SSD controllers, so it is not explained here.

Compaction cost. Compaction is an unavoidable process
and may involve many reads and writes [28]. KEVINSSD
manages meta and data objects in a manner that minimizes
compaction I/Os by separating keys and values. Particularly,
our inode-based naming policy that assigns short keys to data
objects lowers the compaction cost because it enables us to
pack many subobject keys into flash pages. We go one step
further by compressing K2V indices for data objects. Subob-
ject keys have regular patterns (e.g., ‘d:100:0’, ‘d:100:1’,
...), so they are highly compressible even with naive delta-
compression requiring negligible CPU cycles. This reduces
the amount of data read and written during compaction. Ac-
cording to our analysis with write-heavy workloads, the write
amplification factor (WAF) of the compaction was less than
1.19× under the steady-state condition (see §6.2).

Level lookup cost. The LSM-tree inevitably involves mul-
tiple lookups on levels until it finds a wanted KV object (see

80 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 1

 2

0.0030.096

0.096 0.003

Fragmented Sorted

#
 o

f
K

2
V

 P
a

g
e

 R
e

a
d

s LSM+Filter +CACHE +Compress +E-Defrag

Seq
GET

Locality
GET

Rand
GET

Seq
GET

Locality
GET

Rand
GET

Figure 6: The number of reads per KV request to retrieve
a key-index page. The LSM-tree with bloom filters is our
default setting. We add each optimization technique one by
one to understand their impact. The size of bloom filters is
set to 6.5 MB for 40M objects. The cache size is 110 MB.

§2). To avoid useless lookups, KEVINSSD employs small
bloom filters. It reduces the number of extra reads for level
lookups to around one [11]. To further reduce lookup costs,
it also caches popular K2V indices in DRAM. SSDs usually
have a large DRAM (e.g., 1 GB for 1 TB SSD) to keep an
L2P table, but this large L2P mapping table is unnecessary for
KEVINSSD. This enables us to use large DRAM for caching.
To increase an effective DRAM size, KEVIN maintains cached
K2V indices in the compressed form. To make it searchable,
in between compressed indices, we add uncompressed keys
sparsely which can then be used as a pivot index for binary
searching. This optimization shows its strength with large
files. For example, to index a 10 GB file without compres-
sion, 45 MB are required for indexing KV pairs, but with
compression, only 10.8 MB memory is needed.

Fragmented tree cost. The LSM-tree allows each level
to have overlapped key ranges with other levels. Therefore,
K2V indices belonging to the same parent directory or file
can be fragmented across multiple levels, even they have the
same prefix. To retrieve a full list of directory entries or disk
pointers, multiple flash pages on different levels must be read.
This problem is implicitly resolved by compaction that merges
and sorts K2V indices in adjacent levels. KEVIN also provides
an offline user-level tool that explicitly triggers compaction
in storage. Unlike traditional tools (e.g., e4defrag [14]), this
does not involve moving the entire file system’s metadata and
data and is thus much more efficient.

Figure 6 shows the impact of optimization techniques in re-
ducing indexing overhead. For each KV request, we counted
the number of page reads required (i) to find a key-index page
in the LSM-tree and (ii) to read that page from flash. The
I/O cost of reading a value was not included here. Over KV
objects that were fragmented (i.e., unsorted) or fully sorted,
we ran three types of queries: random GET (= point-query),
90:10 localized GET (= point-query), and sequential GET (=
range-query). Sequential GETs over fully-sorted KV objects
required almost zero cost to read a key-index page. This is
because after the first miss on a specific key-index page, fol-
lowing KV requests were hit by the cached indices. Caching
KV indices were also useful when GET requests were local-

Syscalls KEVINFS EXT4
mkdir SET(MO) W(BB + IB + I + DE)
rmdir DELETE(MO) W(BB + IB + DE)
creat SET(MO) W(IB + I + DE)
unlink DELETE(MO + DO) W(BB + IB + DE)
setattr SET(MO) W(I)
write SET(DO) W(BB + D)
open GET(MO) R(I)

lookup GET(MO) R(DE + I)
read GET(DO) R(D)

readdir ITERATE(MO) R(DE + I)

Table 2: I/O operations of KEVIN and EXT4 for basic syscalls.
(MO: meta object, DO: data object, BB: block bitmap, IB:
inode bitmap, I: inode, DE: directory entry, and D: data block)

ized. Regardless of the distribution of KV objects, random
GETs suffered from extra reads, but even in the worst case,
they required about two reads. This is because, with bloom
filters, the number of page reads that happen while searching
for a key-index page in the tree is theoretically limited to
around one, on average [44].

Even with such optimizations, KEVINSSD exhibits slightly
slower read performance than block storage devices that do
not suffer from any extra I/Os for indexing. However, our
entire system exhibits much higher performance than existing
systems thanks to the reduction in metadata I/Os. Moreover,
while metadata I/Os on existing file systems increase as it
ages and gets fragmented, KEVINSSD’s indexing cost is main-
tained constantly through regular compaction of the LSM-tree
in storage and other optimizations.

4 Implementing VFS Operations

We describe how KEVINFS implements VFS operations us-
ing the KV interfaces. KEVINFS is a POSIX-compatible
in-kernel file system and implements 86 out of 102 VFS oper-
ations. We summarize the types of I/O operations to handle
major file syscalls in Table 2, comparing them with EXT4.

Handling write syscalls. All the write-related syscalls can
be handled by two KV commands, SET and DELETE. It is
clear that KEVINFS requires fewer I/O operations than EXT4.
This benefit stems from the fact that KEVINFS does not need
to modify on-disk metadata. Taking the example of unlink,
KEVINFS issues two DELETE commands to remove a meta
object and a data object (which are associated with the file
to be deleted) from storage. On the other hand, EXT4 has
to update data and inode bitmaps to return a data block as
well as an inode. EXT4 needs to update directory entries to
exclude the deleted file from the directory.

KEVINSSD does not involve many internal I/Os for SET
and DELETE. SET first buffers a KV object in the memtable
and then appends to the flash later, leaving the old version if
it exists. DELETE internally involves a small write to leave a
tombstone (4 B) in the tree. Outdated objects (overwritten by
SET) and deleted objects are persistently removed during com-
paction, which is not expensive in our design as we manage
keys and values separately.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 81

Extent-Tree

O(log n)

l

DIR

DATA

DIR

Inode Table

n

Inode

Inode

Inodes

Data

open()

lookup()

read()

readdir()

(a) KEVINFS

LSM-Tree

O(1)

h

meta obj

data obj

GET

ITERATE

dir entries

n

Data

Inode

Inodes

open()

lookup()

read()

readdir() meta obj

(b) EXT4

KEVINSSD

Figure 7: Handling of read syscalls of KEVINFS and EXT4

Handling read syscalls. Read-related syscalls can be im-
plemented by two KV commands, GET and ITERATE. Re-
gardless of the type of data being accessed, KEVINFS needs
to send GET or ITERATE to a designated meta or data ob-
ject as shown in Figure 7(a). open, which retrieves an in-
ode of a file, can be implemented as GET to a meta object.
lookup is the same as open in that, given a full path name
(e.g., /home/alice/), it retrieves inodes of directory com-
ponents (e.g., ‘/’, ‘home/’, and ‘alice/’) by sending GETs
to meta objects. Reading data from a file is also translated
into GET to a data object. Finally, readdir corresponds to
ITERATE, which retrieves a set of meta objects (i.e., inodes)
that belong to the same parent directory.

While the LSM-tree is used as a unified indexing data
structure to service all the read-related syscalls in KEVIN,
EXT4 relies on several on-disk data structures: an inode ta-
ble, an extent tree that indexes disk pointers, and a directory
file that holds directory entries and their inode numbers (see
Figure 7(b)). KEVIN and EXT4 should be comparatively an-
alyzed further because the two systems operate dissimilarly
over different data structures. But, KEVINFS benefits from its
in-storage indexing; all the I/Os associated with the LSM-tree
are performed in storage without any external data transfers.

When opening a file, EXT4 fetches an inode from the inode
table by using its inode number as an index. EXT4 requires a
4 KB block read and is faster than KEVINFS that has to look
up the LSM-tree before reading an inode.

For lookup and read, KEVINFS needs to look up the LSM-
tree to get locations of meta or data objects (i.e., key-index
pages). Similarly, EXT4 needs to search the extent tree to
find disk pointers that locate disk blocks for a directory or
regular file. Both cases may involve extra reads from the disk.
To skip the tree search step for small files, EXT4 embeds a
few disk pointers in an inode. KEVINFS cannot avoid the tree
search. However, it does not require reading a directory file
during lookup, and the data of a small file is preloaded when
its meta object is read. Thus, for lookup and small read, the
two systems exhibit similar performance.

If a file or a directory is huge, the tree search cost could
be high. In KEVINFS, the worst-case I/O cost of looking up

the LSM-tree is $ (ℎ), where ℎ is the tree height. However, as
shown in Figure 6, even under random I/Os, the average I/O
cost is not as high as two reads thanks to bloom filters [11].
In EXT4, the worst-case I/O cost of the extent tree is $ (;),
where ; is the height of the tree (; = 5 by default). The average
I/O cost is $ (;>6 =), where = is the number of extents for
a file which actually decides the tree height. If a file is not
fragmented, = is close to 1, and thus the tree search requires
less than two reads. However, if it is severely fragmented, the
I/O cost could be more than two reads.

Besides the tree lookup cost, KEVINFS has another benefit
in that it is never logically fragmented. In EXT4, once a file
is fragmented, many pieces of file data are scattered across
non-continuous logical blocks. In this case, even when the file
is sequentially read, EXT4 has to issue many read requests to
the disk [10]. As reported by [16], it badly affects I/O through-
put. In KEVINFS, no logical fragmentation happens because
each file is represented as an object, not a set of logical blocks.
Hence, KEVINFS can always perform sequential reads in big
granularity. Also, as explained in §3.3, KEVINSSD shows
high sequential I/O performance on subobjects with index
caching and compression. As a result, EXT4 generally pro-
vides good performance when a file is continuously allocated,
but KEVINFS is more resistant to fragmentation.

Finally, readdir requires retrieving a full list of directory
entries to read the associated inodes. EXT4 offers different
performance depending on the degree of inode table frag-
mentation. If the inodes are allocated together and thus are
stored in the same blocks, only few block I/Os are needed to
retrieve them. However, if they are highly fragmented, EXT4
suffers from high I/O overhead. In KEVINFS, the inodes (i.e.,
values of meta objects) pointed to by the directory entries
are scattered across multiple pages (see 1 in Figure 5). This
inevitably degrades readdir performance. To mitigate this,
KEVINFS uses a simple tweak that rewrites meta objects to
the disk. When meta objects retrieved by ITERATE are evicted
from the page cache, KEVINFS rewrites them to the disk even
if some of them are clean. All of the meta objects that are
evicted together are likely to be written to the same flash pages
so that the next time KEVINFS can retrieve them quickly with-
out multiple page reads. We plan to study a way to sort meta
objects inside KEVINSSD without explicitly rewriting.

5 Crash Consistency

We describe how KEVIN implements transactions to main-
tain consistency. KEVINFS issues fine-grained transactions
by tracking dependency among KV objects so that they are
updated atomically (see §5.1), and KEVINSSD supports trans-
action commands exploited by KEVINFS (see §5.2).

5.1 Maintaining Consistency in KEVINFS
Although an ideal file system would immediately persist data
upon a write without any consistency problems, current file

82 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

systems follow a compromised model for better performance.
That is, file systems provide an explicit interface to the users
(i.e., fsync) by which users can request a barrier across up-
dates or immediate durability enforcement whenever needed.
In addition, file systems such as EXT4 maintain a global trans-
action comprising all associated blocks with write requests
during a time window, and the flush daemon atomically per-
sists them to storage through the journaling. This mechanism
prevents the out-of-execution and/or buffering of write that
may lead to an inconsistent state for the file system.

KEVIN makes data durable through both user-initiated
fsync and the flush daemon, but without the overhead as-
sociated with the journaling mechanism. This is achieved by
KEVINSSD supporting fine-grained transactions.

KEVINFS only builds a transaction associated with de-
pendent KV objects and simply transfers the information to
the underlying storage. KEVINSSD then materializes given
transactions to the physical medium with an SSD-internal
technique (see §5.2). To this end, we extend the KV interface
to support three transaction commands: BeginTX, EndTX, and
AbortTX. Below is an example of a transaction that manages
the KV objects associated with unlink in Table 2. KEVINFS
can instruct the storage to remove meta and data objects atom-
ically by wrapping KV commands in the same transaction:

BeginTX(TID);
DELETE(TID,m:4:c.txt); /* data object */
DELETE(TID,d:5); /* meta object */
EndTX(TID);

KEVINSSD guarantees atomicity and durability for a trans-
action. To ensure file-system consistency, KEVINFS preserves
the order between dependent transactions. As a result, KEV-
INFS ensures the same level of reliability as other journaling
file systems, and also offers the following desired properties.

Transaction disentanglement. The performance of a file
system suffers from a phenomenon known as transaction
entanglement that flushes the entire global transaction when
fsync is requested for only a part of the buffered data. This
not only increases the fsync latency, but lowers the effect
of write buffering. Some attempted to resolve this issue by
splitting a transaction into the smaller ones by files or by sub-
trees [29, 32]. However, it could not be effective in practice
because the transaction disentanglement is impossible when
data is shared across transactions. Typical file systems engrave
small metadata within a fixed-sized block (e.g., inode/bitmap
blocks), and thus chances are high that the metadata updates
in a different context happen to the same block.

In contrast, KEVINFS does not maintain any on-disk meta-
data shared by different files unless they are adjacent in the
file system tree (e.g., a parent directory and a file). This nature
makes transaction disentanglement easy and likely more ef-
fective. KEVINFS basically maintains a single running trans-
action containing all pending KV commands and sends them
at once through periodic flush daemon (a default period is 5s).
However, upon fsync, KEVINFS forks a small transaction

L2

L1

Controller DRAM

Flash

Value

(4-KB)

d
:5

0
:1

d
:1

0
:0

«

d
:2

8
:0

Key-index page

(Sorted)

TxRecovery

d
:3

:1
d

:9
:0

«

d
:8

:4

d
:5

:1
d

:5
:0

«

d
:6

:0

Ln

100
CHECKPOINTED

101
COMMITTED

102
RUNNING

TxTable Skiplist

«

«

«

«

«

«

d
:2

2
:1

0

«

d
:2

9
:3

2
d

:1
9

:1
1

TxLogs

«

Memtable

«

«

«

«

«

checkpointed

TxLogs

(Unsorted)

½

¾

Z

logging

Figure 8: Transaction management of KEVINSSD

that only includes the KV objects associated with the fsynced
file, thereby achieving short latency.

Syscall atomicity guarantee. Current journaling file sys-
tems do not ensure the atomicity of a syscall. Because the
transaction size is limited by the remaining journal size, even
a single syscall can be split into multiple transactions in some
cases [51]. This is rare but possible and thus the user-level
applications should employ another technique (e.g., user-level
journaling) to ensure an atomic write over the file system.
KEVINFS has no such limitation and thus enforces the atom-
icity for each syscall by assuring all of the associated KV
objects reside in the same transaction.

5.2 Transaction Processing in KEVINSSD
We now explain how KEVINSSD supports transaction com-
mands. Our design is essentially based on journaling but we
further optimize it to perform well with KEVINSSD.

Transaction management. Figure 8 shows the transaction
management in KEVINSSD. We employ three data structures:
a transaction table (TxTable), transaction logs (TxLogs), and
a recovery log (TxRecovery). The TxTable keeps the infor-
mation of transactions, while the TxLogs keep K2V indices
of transaction objects. The TxLogs are stored either in the
DRAM or in the flash. They are also used to keep track of
K2V indices committed to !1 in the tree. The TxRecovery is
used to recover or abort transactions during the recovery.

When BeginTx(TID) comes, KEVINSSD creates a new
entry in the TxTable, where each entry keeps a TID, its status,
and locations of K2V indices associated with the transaction.
Many transactions can be activated simultaneously as there
exist multiple entries in the table. Initially, the status of the
transaction is RUNNING, which means that it can be aborted in
the event of a crash (see 1 in Figure 8). When subsequent
commands belonging to the transaction arrive, KEVINSSD
keeps KV indices in the DRAM-resident TxLogs and buffers
associated values in the memtable. Once the TxLogs or the
memtable becomes full, KV indices or values are logged into
the in-flash TxLogs or the flash. All of them are not applied to
the LSM-tree yet as they can be aborted. When EndTx(TID)
is received, the associated transaction is committed, and its
status is changed to COMMITTED (see 2). KEVINSSD then
notifies KEVINFS that the transaction is committed. Even

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 83

though some KV indices and values can still be buffered
in DRAM (i.e., the in-memory TxLogs and the memtable),
KEVINSSD ensures persistence by using a capacitor. Finally,
committed KV indices should be reflected to the permanent
data structure, the LSM-tree, through a checkpoint process.

Unfortunately, the checkpoint cost is high because commit-
ted KV indices should be inserted into !1 in the LSM-tree.
Recall that some of KV indices are stored in the in-flash
TxLogs and are unsorted because they are logged in their
arrival order. Thus, the checkpoint process involves extra I/Os
and sorting overhead. We relieve this cost by treating commit-
ted TxLogs as part of !1 and delaying the writing of their KV
indices to the tree until the compaction between !1 and !2
happens. When the compaction is triggered, KV indices in
the TxLogs and !1 are flushed out to !2 together. In this way,
we can skip writing KV indices to !1. To quickly look up
KV indices in the TxLogs (which are unsorted), KEVINSSD
temporarily builds a small skiplist to index K2V pairs in the
TxLogs. The sorted nature of the skiplist also makes it easy
to apply KV indices into the tree during the compaction.

Later, once associated KV indices are checkpointed to !2
through the compaction, the transaction status is changed into
CHECKPOINTED (see 3), and the associated TxLogs and the
TxTable entry occupied by them are reclaimed.

Recovery. The TxTable, buffered K2V indices, and values
must be materialized to the flash regularly or when a certain
event happens. In our design, KEVINSSD materializes them
when a sudden crash is detected. While power is being sup-
plied by a capacitor, it flushes out buffered K2V indices to the
in-flash TxLogs and buffered values to the flash. The TxTable
is updated to point to the in-flash TxLogs and is then appended
to the TxRecovery. Two specific flash blocks (e.g., blocks #2
and #3) are reserved for the TxRecovery and are treated as
a circular log. When a system reboots, KEVINSSD scans
the TxRecovery, finds the up-to-date TxTable, and checks the
status of each transaction. If a transaction was already commit-
ted, it means that KEVINSSD persistently wrote KV objects
to the flash before. Associated K2V indices are thus pushed
into the skiplist to be searchable. The RUNNING transactions
are aborted, and associated resources are reclaimed.

KEVINSSD supports the same level of crash consistency as
EXT4 with the ordered mode, but requires much smaller I/Os
by avoiding double writes. Moreover, by leveraging capacitor-
backed DRAM in the controller, it further reduces the over-
head of flushing out KV objects and lowers the delay of mark-
ing journal commits. The DRAM-resident TxLogs is 2 MB in
size in our default setup, so a large capacitor is not required.

6 Experiments
We present experimental results on KEVIN. We seek to an-
swer the following questions: (i) Does KEVIN provide high
performance under various workloads, in particular, metadata
intensive ones? (ii) How much data movement between the
host and the SSD can be reduced? (iii) Does KEVIN provide

high resistance to fragmentation? (vi) Does KEVIN provide
benefits over existing file systems based on KV stores?

6.1 Experimental Setup
All the experiments are performed on a server machine
equipped with Intel’s i9-10920X CPU (12 cores running at
4.6 GHz) and 16 GB DRAM. The Linux kernel v4.15.18 is
used as the operating system. Our SSD platform is based on
a Xilinx VCU108 [53] equipped with a custom flash card
providing 2.4 GB/s and 860 MB/s throughputs for reads and
writes, respectively. The total SSD capacity is set to 128 GB.
The FPGA contains controller logic to manage NAND chips
and to provide the PCIe interface to interact with the server.

Our SSD platform does not have a CPU and has a simi-
lar architecture to an open-channel SSD [5]: it runs the FTL
software on the host system. To emulate the limited resources
of an SSD controller on an x86 host, we implement FTLs
in the guest Linux OS in QEMU/KVM, completely isolated
from the host that runs file systems. We assign 4 cores to the
guest. 128 MB DRAM (0.1% of the SSD capacity [42, 43])
is assigned to the guest, while the rest is used by the host.
The interface throughput between the host and the guest is
about 8 GB/s, which is similar to that of PCIe 4.0 x4. Our de-
fault setup is biased towards existing systems considering its
high interface throughput. Our system setting has a limitation.
LSM-tree’s compaction requires high computation power, but
can easily be accelerated by FPGA or ASIC [18, 58]. Owing
to the lack of those accelerators on our host system, we use
the Intel i9 CPU as a sorting accelerator.

We implement two FTL schemes, the page-level FTL that
uses the simple L2P indexing and the proposed KEVINSSD.
The page-level FTL uses 128 MB DRAM for an L2P map-
ping table. KEVINSSD uses 6.5 MB of DRAM for bloom
filters, 2 MB for TxLogs, 1 MB for memtables, 6 MB for
in-memory index, and 112.5 MB for caching popular entries.
We compare KEVINFS with four kernel file systems, EXT4
with the ordered mode, XFS, BTRFS, and F2FS.

6.2 Experimental Results
We evaluate KEVIN using micro-benchmarks in §6.2.1 and
carry out experiments with realistic workloads in §6.2.2. Per-
formance analysis of aged file systems is presented in §6.2.3.
The benefits of in-storage indexing are analyzed more deeply
in §6.2.4. In graphs, EXT4, XFS, BTRFS, F2FS, and KEVIN
are abbreviated as ‘E’, ‘X’, ‘B’, ‘F’. and ‘K’, respectively.

6.2.1 Results with Micro-benchmarks

We conduct a set of experiments using three types of micro-
benchmarks: metadata-only, small-file, and data-only work-
loads, all of which have different file/directory access patterns.

Metadata-only workloads. They create and delete a large
number of empty files and directories. We use creat, mkdir,
unlink, and rmdir from Filebench [48] that perform inten-
sive updates of on-disk metadata, but do not involve any I/Os

84 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

90

180

270

360

450

mkdir rmdir creat unlink readdir-1st readdir-2nd

T
h
ro

u
g

h
p

u
t

(k
o
p

s
/s

)

E X B F K

(a) Throughput

0

30

60

90

120

150

E X B F K E X B F K E X B F K E X B F K E X B F K E X B F K

mkdir rmdir creat unlink readdir-1st readdir-1st

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write Metadata Read Metadata Write Journaling I/O

(b) File system traffic

Figure 9: Metadata intensive workloads

on file data. A total of 8M files and directories are created
and deleted. This is almost the maximum number of files and
directories that can be created with EXT4’s default configura-
tion on a 128 GB disk. We also run readdir that iterates over
a large number of directories. 4M files are stored in 800K
directories. To generate sufficient I/Os, we run 16 Filebench
instances in parallel. All of the file systems are initially empty.

Figure 9(a) shows results. KEVIN outperforms other sys-
tems by 6.2× on average. Aside from readdir, KEVIN
achieves up to 43.8× better I/O throughput than EXT4. This
is because KEVIN eliminates almost all of the metadata I/O
traffic. Figure 9(b) depicts the amount of data moved between
the host and the SSD. Compared to the existing file systems,
KEVIN involves tiny data movements because it only needs
to deliver small-sized KV commands.

For readdir, KEVIN performs poorly for the first run be-
cause it requires many reads to retrieve values (i.e., inodes)
from the flash pages. For its second run, KEVIN shows im-
proved performance (from 75kops/s to 120kops/s). As ex-
plained in §4, KEVINFS rewrites a group of meta objects
fetched by ITERATE to store them in the same flash pages,
hoping that it reduces in-storage reads in the future. This
optimization can increase the eviction cost slightly, but it is
imperceptible to users as the I/O traffic incurred by rewrites
is low and is handled in the background. Note that before the
second run, we empty the inode and dentry caches to get rid
of the impact of cached metadata.

KEVIN incurs internal I/Os to manage LSM-tree indices
in storage, which can be categorized into three types: com-
paction I/Os to merge and sort K2V indices, tree lookup reads
to find key-index pages, and garbage collection (GC) I/Os

0

2

4

6

8

D
e
v
ic

e
 T

ra
ff
ic

 (
G

B
) Compaction Lookup

0

2

4

6

8

D
e
v
ic

e
 T

ra
ff
ic

 (
G

B
) Compaction Lookup GC

Figure 10: KEVIN I/O overheads on micro-benchmarks

0

90

180

270

360

450

creat-4K unlink-4K cp

T
h
ro

u
g
h
p
u
t

(k
o
p
s
/s

)

E X B F K

(a) Throughput

0

60

120

180

240

300

E X B F K E X B F K E X B F K

creat-4K unlink-4K cp

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write Metadata Read Metadata Write Journaling I/O

(b) File system traffic

Figure 11: Data & metadata workloads

to reclaim free space. As illustrated in Figure 10, extra I/Os
to manage the LSM-tree are negligible in comparison with
metadata overhead in other file systems (see Figure 9(b)).
Since our experiments are conducted under clean file systems,
compaction and GC I/Os are almost zero. We analyze their
impacts on performance in §6.2.3.

Small-file workloads. They include three scenarios: the
creation (creat-4K) and deletion (unlink-4K) of 4 KB small
files, as well as a copy (cp) of many small files. All of them
create lots of data traffic on both metadata and file data. We
create and delete 8M files and copy 4M files. Figure 11 shows
experimental results. KEVIN exhibits the best performance
when creating and removing small files thanks to its low meta-
data overhead. However, for cp, KEVINFS shows similar
performance to EXT4. We observe that KEVIN shows high
write throughput for small files, but the throughput of reading
small files to copy is slow and becomes a bottleneck. This is
owing to the relatively high tree lookup overheads. For our
experiments, we run 16 Filebench instances in parallel, which
cause random file reads. This eventually results in random
meta object lookups on the KEVINSSD side. Moreover, as a
small 4 KB file contains one subobject, KEVINSSD’s com-
pression optimizations are not effective. This is the reason
why the number of reads to find key-index pages (tree lookup)
is relatively high for cp in Figure 10. Even worse, while 4
KB file data is slightly large to be embedded in a meta object
in KEVINSSD, EXT4 can directly locate a disk block where
data is stored by referring to disk pointers in inodes, thereby
incurring no extents lookup.

Data-only workloads. To assess how efficiently KEVIN
handles a large file, we create a 32 GB file and run various
I/O patterns using the FIO tool [4] on it. We first measure
sequential and random write throughputs. For measuring se-
quential write (SW) throughput, we run a single FIO instance
that sequentially writes 32 GB of data on a single file. For
the measurement of random write (RW) throughput, we run 16
FIO instances that randomly write 4 KB data on a file. Over
each created file (RW or SW), we run FIO instances that read
data sequentially (+SR) or randomly (+RR) to measure their
respective read throughputs.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 85

0

300

600

900

1200

1500

SW SW+SR SW+RR RW RW+SR RW+RR

T
h
ro

u
g

h
p

u
t

(M
B

/s
)

E X B F K

(a) Throughput

0

40

80

120

160

200

E X B F K E X B F K E X B F K E X B F K E X B F K E X B F K

SW SW+SR SW+RR RW RW+SR RW+RR

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write Metadata Read Metadata Write Journaling I/O

(b) File system traffic

Figure 12: Data intensive workloads

Overall, KEVIN shows similar performance as the other
file systems as depicted in Figure 12(a). However, for random
write (RW), it shows slightly low throughput because of extra
I/Os for compaction (see Figure 10). An interesting observa-
tion is that KEVIN exhibits excellent performance even for
random read workloads (SW+RR and RW+RR). This is because
KEVIN benefits from the highly compressible key format of
data objects. This property enables us to cache almost all KV
indices in DRAM for the 32 GB file, making it possible to
achieve a sufficiently high hit ratio.

6.2.2 Results with Realistic Workloads

To understand the performance of KEVINFS under realis-
tic workloads, we conduct experiments using five Filebench
workloads (Varmail, OLTP, Fileserver, Webserver, and
Webproxy), and four real applications (TPC-C, clone, rsync,
and kernel compilation). Filebench mimics I/O behaviors of
a target application that are modeled by parameters listed in
Table 3. In our experiment, we use default parameters preset
by Filebench, except for the number of operations.

Figures 13 and 14 show our results. For Varmail, KEV-
INFS exhibits 37% higher throughput than EXT4. Varmail
emulates a mail server, so it performs I/Os on many small
files. Metadata-intensive syscalls, creat and unlink, are fre-
quently invoked to create and remove files. To persist user
emails immediately, it calls fsync every time after write,
incurring many I/Os to the journaling area.
OLTP is a write-intensive workload in which more than

100 threads create files and append data to the files. It also
frequently invokes fdatasync, which results in many I/Os
sent to metadata and the journaling area. As a result, KEVIN

Table 3: Filebench parameters. C/U/R/W represents the ratio
of creat, unlink, read, and write operations.

Avg. # of Threads # of C/U/R/W
file size files operations ratio

Varmail 16 KB 3.2 M 16 12.8 M 1:1:2:2
OLTP 10 MB 3.2 K 211 10 M 0:0:1:10

Fileserver 128 KB 800 K 50 8 M 1:1:1:2
Webserver 16 KB 1.6 M 100 12.8 M 0:0:10:1
Webproxy 16 KB 2 M 100 4 M 1:1:5:1

0

40

80

120

160

200

Varmail OLTP Fileserver Webserver Webproxy

T
h
ro

u
g
h

p
u

t
(k

o
p

s
/s

)

E X B F K

(a) Throughput

0

50

100

150

200

250

E X B F K E X B F K E X B F K E X B F K E X B F K

Varmail OLTP Fileserver Webserver Webproxy

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write Metadata Read Metadata Write Journaling I/O

(b) File system traffic

0

15

30

45

60

Varmail OLTP Fileserver Webserver Webproxy

D
e
v
ic

e
 T

ra
ff
ic

 (
G

B
)

Compaction Lookup GC

(c) KEVIN I/O overheads

Figure 13: Realistic workloads from Filebench

0

15

30

TPC-C

tp
m

C
 (

k
q

u
e

ri
e

s
/m

in
) E X B F K

0

10

20

clone rsync
T

im
e

 (
s
)

0

500

1000

Build

T
im

e
 (

s
)

Figure 14: Application workloads

exhibits 26% higher throughput than F2FS.
KEVINFS shows 23% lower throughput than EXT4 in

Fileserver. Fileserver is a data-intensive workload that
reads and writes a relatively large size of files (128 KB). It
does not invoke fsync, so metadata updates and journaling
I/Os occur only occasionally. Owing to the large amounts of
data written to the disk, KEVINFS suffers from compaction
overhead which slows down its performance over EXT4.
Webserver is a read-dominant workload issuing many

reads to small files (16 KB) with few writes. Syscalls that
update metadata are not invoked in Webserver. Although it
is not preferable to KEVIN, KEVIN shows a slightly slower
performance (10%) than EXT4. Webserver exhibits high
locality in accessing files. Thanks to a high cache hit ratio
(98.3%) in KEVINSSD, the number of page reads to get key-
index pages is relatively small.
Webproxy is also a read-dominant workload, but KEVINFS

exhibits higher throughput compared to EXT4. Our close
examination reveals that this is owing to the high directory
management overhead. Webproxy contains a large number of
files (e.g., 1M files) per directory. Whenever files are created
and removed, it is necessary to update directory entries, which
is costly. KEVINFS does not maintain directory entries, so its
performance is not affected by directory updates.

Finally, we carry out experiments using real applica-

86 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0

10

20

30

40

50

T
h
ro

u
g
h

p
u

t
D

e
g
ra

d
a
ti
o
n
 (

%
) E K

(a) Effect of fragmentation on performance

0

10

20

U A U A U A U A

EXT4
unlink

KEVIN
unlink

EXT4
cp

KEVIN
cp

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write

Metadata Read Metadata Write

Journaling I/O

(b) File system traffic

0

15

30

U A U A U A U A

EXT4
unlink

KEVIN
unlink

EXT4
cp

KEVIN
cp

D
e

v
ic

e
 T

ra
ff
ic

 (
G

B
)

Compaction Lookup GC

(c) I/O overhead of device

Figure 15: Write performance on aged file systems. In (b) and
(c), ‘U’/‘A’ shows unaged/aged file system performance.

tions, including TPC-C, clone, rsync, and kernel compilation
(build). For TPC-C, MySQL is used as the DBMS engine.
We create 50 data warehouses run by 100 clients. The DB size
is 14 GB. The overall behavior of TPC-C is similar to OLTP in
that it is write-intensive and frequently invokes fsync. Thus,
KEVIN provides about 31% better throughput (tpmC) than
EXT4. A local 3.1 GB Linux kernel repository is used as the
source for both clone and rsync. They involve the creation
of many small files (as creat-4K in §6.2.1), so KEVIN offers
the best performance. A Linux kernel compilation process
requires many small file reads and writes, along with directory
traversals. Our results, however, reveal that the bottleneck of
the kernel compilation is CPU not I/O. Consequently, all of
the file systems provide similar compilation times.

6.2.3 Results under Aged File Systems
We analyze the performance of the file systems when they
are aged. To age the file systems, we use Geriatrix [20] and
Filebench to write more than 800 GB of data. For performance
measurement, we run the same benchmarks that we use in
§6.2.1. Since the file system space utilization is about 60%,
we reduce the number of files and directories created by half.

Figure 15(a) shows the extent to which the file-system per-
formance degrades after the aging process. We observe that
KEVIN shows smaller performance reductions compared to
EXT4 across almost all of the benchmarks. EXT4 is affected
by high metadata and journaling overhead, which are exac-
erbated by file-system fragmentation. In the case of unlink
in Figure 15(a), metadata and journaling I/Os increase by up
to 2.2× after aging. On the other hand, there are no signifi-
cant changes in file-system level I/O traffic in KEVIN. After
aging, the compaction I/Os in KEVINSSD increase to 7.7×.
Due in part to its very small portion in total I/Os, its nega-
tive impact on I/O performance is not huge. This confirms
that KEVIN is more resistant to fragmentation. Unfortunately,

650

700

750

800

850

0 1 2 3 4 5

T
h

ro
u

g
h

p
u
t

(M
B

/s
)

of Run

E K

(a) FIO

0

50

100

150

200

250

0 1 2 3 4 5M
a
x
im

u
m

 L
a
te

n
c
y
 (

m
s
)

of Run

E K

(b) readdir

Figure 16: Read performance on aged file systems

KEVIN suffers from increased compaction and GC overhead
in data-intensive workloads, creat-4K and cp. Our LSM-
tree indexing algorithm requires more flash space (3∼10%)
than the typical FTL, owing to obsolete objects staying in
the tree before getting reclaimed by compaction. Thus, GC
invocations occur more frequently.

To understand the impact of fragmentation on user-
perceived performance, we measure read throughput and la-
tency while varying the degree of fragmentation. The degree
of fragmentation is controlled by the number of fragmenta-
tion tool runs. For each run, 128 GB data are written to the
file system. We first measure sequential read throughput on a
32 GB large file (see Figure 16(a)). The read throughput of
EXT4 gradually degrades as the run repeats. When the file
system is clean (i.e., the run 0), the file has only one extent.
However, the number of extents increases to 3,798 at run 4.
As explained in §4, this increases not only the tree search cost
but the number of I/O requests to the disk. On the other hand,
KEVIN exhibits consistent read throughput, achieving 16%
higher throughput than EXT4.

We also measure the latency of readdir (see Figure 16(b)).
The performance of readdir is decided by the number of
block reads to fetch inodes from the inode table. As the run
repeats, the inode table is severely fragmented, and thus EXT4
involves more disk accesses to retrieve inodes. This results
in an increase in latency of readdir. On average, KEVIN
shows slower speed for readdir than EXT4, as in Figure 9(a).
However, it is not affected by the fragmentation of the inode
table and can remove data transfers to the host by fetching
inodes internally. Moreover, by reading multiple meta objects
at the same time through SSD’s internal parallelism, it exhibits
much shorter latency when the file system is aged.

6.2.4 Analyzing Effects of In-storage Indexing
Finally, we evaluate the benefits of performing indexing op-
erations in storage. The best way of doing this would be to
move KEVINSSD’s internal indexing engine to KEVINFS.
Since our LSM-tree engine is currently designed to run as
the flash firmware, porting this back to the kernel is a non-
trivial job. As an alternative, we use TokuDB from previous
KV store based file system studies [19, 56, 57]. TokuDB uses
the BY-tree as an internal indexing algorithm which has low
computational complexity and asymptotically performs better
than LSM-trees. We used the TokuDB version included in the
BetrFS’s git repository [33]. To bridge TokuDB with KEV-

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 87

0

100

200

300

400

500

T
h
ro

u
g
h
p
u
t

 (
k
o
p
s
/s

)

T K

(a) Throughput

0

2

4

6

8

T K T K T K T K T K T K

mkdir rmdir creat unlink readdir-1st readdir-2nd

F
S

 T
ra

ff
ic

 (
G

B
)

Data Read Data Write Metadata Read Metadata Write Journaling I/O

(b) File system traffic for metadata workloads

0

200

400

600

800

T K T K T K T K T K T K T K T K

creat-4K unlink-4K cp Varmail OLTP Fileserver Webserver Webproxy

F
S

 T
ra

ff
ic

 (
G

B
) Data Read Data Write Metadata Read Metadata Write Journaling I/O

(c) File system traffic for small-file and realistic workloads

Figure 17: Effects of in-storage indexing

INFS, we port the code from v3.11.10 [19] to v4.15.18 kernel.
For a fair I/O traffic comparison, we turn off TokuDB’s value
compression feature and set the internal cache size to 4 GB.
This in-kernel TokuDB operates on a block SSD formatted to
EXT4 [19]. The block SSD uses a page-level FTL.

We conduct experiments with Filebench used from §6.2.1
and §6.2.2. Figure 17(a) shows I/O throughputs. In the graph,
‘T’ represents a setting where KEVINFS uses TokuDB as its
in-kernel indexing engine in the host, while ‘K’ denotes the
proposed KEVIN that uses the in-storage indexing engine.
KEVIN shows an improvement of 7.4× on average even with
readdir which is relatively slow.

To understand why KEVIN performs much better than
KEVINFS+TokuDB, we analyze I/O traffics from the two
settings, which are presented in Figures 17(b) and (c). KEV-
INFS+TokuDB numbers are taken from TokuDB’s statistics.
In KEVINFS+TokuDB, ‘Data Read/Write’ represents the traf-
fic from reading and writing KV objects and ‘Metadata Read-
/Write’ is the extra indexing I/O traffic from the BY-tree
to manage KV objects. ‘Journaling I/O’ includes the traffic
from TokuDB’s WAL logic. Fileserver fails to run on KEV-
INFS+TokuDB owing to the space overhead [19] caused by
the BY-tree algorithm that consumes all disk space.

In the case of the write-intensive workloads, traffic differ-
ences are substantial. This is because TokuDB incurs many
extra I/Os. As mentioned in §2.3, the WAL policy [13,15,34]
has to write all KV objects to logs before materializing them
to the data area. Note that this overhead can be mitigated if the
late-binding journaling is used [56] which is not implemented
yet in this work. In workloads such as Varmail that have
many fsync calls, TokuDB has to flush the logs, increasing
fsync’s latency. KEVIN shows 33.8× shorter latency com-

pared to KEVINFS+TokuDB. The BY-tree also incurs more
traffic because of its inherent behavior that transfers data from
the internal node buffer to the leaf node. Operations involving
many point queries such as cp, Webserver, and Webproxy
show lower read traffic in KEVIN than KEVINFS+TokuDB.
KEVIN performs indexing with the key-index page caching
and compression from the storage device itself, and thus it
offers fast indexing performance without any external I/Os.
readdir shows worse performance on KEVIN. TokuDB man-
ages all KV pairs in a sorted manner without key-value sepa-
ration, and thus ITERATE performs quickly akin to sequential
I/Os. However, when KEVIN rewrites the meta object before
the second run, it shows higher performance, as it does not
need to read multiple value pages. In this case, we expect
the performance will be further improved if KEVIN adopts
full-path indexing that globally sorts the file-system hierarchy.

7 Conclusion

In this paper, we proposed KEVIN, which improved file sys-
tem performance by offloading indexing capability to the
storage hardware. KEVINSSD exposed the KV interface and
supported transaction commands. On top of this, we built
KEVINFS, a new file system that translated VFS calls into KV
objects and exploited storage capabilities to remove metadata
and journaling overhead. Our results showed that, on average,
KEVIN improved I/O throughput by 6.2× and reduced the I/O
traffic by 74% for metadata-intensive workloads.

The idea of KEVIN can be extended in two directions. First,
we focused on porting file systems over the KV device in this
study. However, the proposed KV interface can be extended to
support a broader range of applications, ranging from block-
interface applications [8] to SQL applications [12], giving us
the potential to replace the existing block I/O interface. Ap-
plications running directly over the KV device are expected
to enjoy the same benefits (e.g., small metadata overheads) as
KEVIN. Second, KEVINFS can be implemented in the form
of a user-level file system. KEVINSSD can export KV-APIs
to the user-space (e.g., via SPDK [54]), and KEVINFS ac-
cesses a storage device without going through the deep kernel
stack. The user-level KEVINFS would be faster than existing
user-level file systems because it not only has a lighter-weight
architecture (e.g., free from metadata management and jour-
naling), but is also less affected by fragmentation.

Acknowledgments

We would like to thank our shepherd, Dr. Donald E. Porter,
and five anonymous reviewers for all their helpful comments.
This work was supported by Samsung Electronics Co., Ltd.
and the National Research Foundation (NRF) of Korea (NRF-
2018R1A5A1060031 and NRF-2019R1A2C1090337). We
thank Samsung Electronics for providing KV-SSD prototypes.
(Corresponding author: Sungjin Lee)

88 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D Davis, Mark S Manasse, and Rina Panigrahy.
Design tradeoffs for SSD performance. In Proceedings
of the USENIX Annual Technical Conference, pages 57–
70, 2008.

[2] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces, Crash
Consistency: FSCK and Journaling. Arpaci-Dusseau
Books, 1.01 edition, 2019.

[3] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces, File
System Implementation. Arpaci-Dusseau Books, 1.01
edition, 2019.

[4] Jens Axboe. FIO: Flexible I/O Tester Synthetic Bench-
mark. https://github.com/axboe/fio.

[5] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
Lightnvm: The linux open-channel SSD subsystem. In
Proceedings of the USENIX Conference on File and
Storage Technologies, pages 359–374, 2017.

[6] Yun-Sheng Chang and Ren-Shuo Liu. OPTR: Order-
Preserving Translation and Recovery Design for SSDs
with a Standard Block Device Interface. In Proceed-
ings of the USENIX Annual Technical Conference, pages
1009–1024, 2019.

[7] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Consistency
without Ordering. In Proceedings of the USENIX Con-
ference on File and Storage Technologies, page 9, 2012.

[8] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and
Sungjin Lee. LightStore: Software-defined Network-
attached Key-value Drives. In Proceedings of the Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
939–953, 2019.

[9] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh
Gupta, and Steven Swanson. From ARIES to MARS:
Transaction Support for next-Generation, Solid-State
Drives. In Proceedings of the ACM Symposium on Op-
erating Systems Principles, pages 197–212, 2013.

[10] Alex Conway, Eric Knorr, Yizheng Jiao, Michael A. Ben-
der, William Jannen, Rob Johnson, Donald E. Porter,
and Martin Farach-Colton. Filesystem aging: It’s more
usage than fullness. In Proceedings of the USENIX
Workshop on Hot Topics in Storage and File Systems,
2019.

[11] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal Navigable Key-value Store. In Pro-
ceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 79–94, 2017.

[12] Facebook, Inc. MyRocks: A RocksDB storage engine
with MySQL. http://myrocks.io.

[13] Facebook, Inc. RocksDB: A Persistent Key-value Store
for Fast Storage Environments. https://rocksdb.
org.

[14] Akira Fujita and Takashi Sato. e4defrag - Online De-
fragmenter for Ext4 Filesystem. https://man7.org/
linux/man-pages/man8/e4defrag.8.html.

[15] Google, Inc. LevelDB. https://github.com/
google/leveldb.

[16] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin
Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and
Jihong Kim. Improving File System Performance of Mo-
bile Storage Systems Using a Decoupled Defragmenter.
In Proceedings of the USENIX Annual Technical Con-
ference, pages 759–771, 2017.

[17] Xiao He, Zhongxia Wang, Jingsheng Zhang, and
Chengzi Ji. Research on security of hard disk firmware.
In Proceedings of International Conference on Com-
puter Science and Network Technology, pages 690–693,
2011.

[18] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and
Sungjin Lee. PinK: High-speed In-storage Key-value
Store with Bounded Tails. In Proceedings of the
USENIX Annual Technical Conference, pages 173–187,
2020.

[19] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael Bender,
Martin Farach-Colton, Rob Johnson, Bradley C. Kusz-
maul, and Donald E. Porter. BetrFS: A Right-Optimized
Write-Optimized File System. In Proceedings of the
USENIX Conference on File and Storage Technologies,
pages 301–315, 2015.

[20] Saurabh Kadekodi, Vaishnavh Nagarajan, and Gre-
gory R. Ganger. Geriatrix: Aging What You See and
What You Don’t See. A File System Aging Approach
for Modern Storage Systems. In Proceedings of the
USENIX Annual Technical Conference, pages 691–704,
2018.

[21] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-
Hwan Oh, and Changwoo Min. X-FTL: Transactional
FTL for SQLite Databases. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 97–108, 2013.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 89

https://github.com/axboe/fio
http://myrocks.io
https://rocksdb.org
https://rocksdb.org
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://github.com/google/leveldb
https://github.com/google/leveldb

[22] Yangwook Kang, Rekha Pitchumani, Pratik Mishra,
Yang-suk Kee, Francisco Londono, Sangyoon Oh,
Jongyeol Lee, and Daniel D. G. Lee. Towards Building a
High-performance, Scale-in Key-value Storage System.
In Proceedings of the ACM International Conference on
Systems and Storage, pages 144–154, 2019.

[23] Sudarsun Kannan, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath
Palani. Designing a True Direct-Access File System
with DevFS. In Proceedings of the USENIX Conference
on File and Storage Technologies, pages 241–256, 2018.

[24] Sang-Hoon Kim, Jinhong Kim, Kisik Jeong, and Jin-Soo
Kim. Transaction Support using Compound Commands
in Key-Value SSDs. In Proceedings of the USENIX
Workshop on Hot Topics in Storage and File Systems,
July 2019.

[25] Changman Lee, Dongho Sim, Joo Young Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In Proceedings of the USENIX Conference on File
and Storage Technologies, pages 273–286, 2015.

[26] Seung-Ho Lim, Hyun Jin Choi, and Kyu Ho Park. Jour-
nal Remap-based FTL for Journaling File System with
Flash Memory. In Proceedings of the International
Conference on High Performance Computing and Com-
munications, pages 192–203, 2007.

[27] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Shan Lu. A study of Linux file
system evolution. In Proceedings of the USENIX Con-
ference on File and Storage Technologies, pages 31–44,
2013.

[28] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
WiscKey: Separating Keys from Values in SSD-
conscious Storage. In Proceedings of the USENIX
Conference on File and Storage Technologies, pages
133–148, 2016.

[29] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. Physical disentanglement in a container-based
file system. In Proceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation,
pages 81–96, 2014.

[30] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-
Won Lee, and Young Ik Eom. Lightweight application-
level crash consistency on transactional flash storage. In
Proceedings of the USENIX Annual Technical Confer-
ence, pages 221–234, 2015.

[31] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The Log-structured Merge-tree (LSM-
tree). Acta Informatica, 33(4):351–385, 1996.

[32] Daejun Park and Dongkun Shin. iJournaling: Fine-
Grained Journaling for Improving the Latency of Fsync
System Call. In Proceedings of the USENIX Annual
Technical Conference, pages 787–798, 2017.

[33] Percona, Inc. BetrFS Repository. https://github.
com/oscarlab/betrfs.

[34] Percona, Inc. Percona TokuDB. https:
//www.percona.com/software/mysql-database/
percona-tokudb.

[35] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Analysis and evolution of
journaling file systems. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference,
pages 8–8. USENIX Association, 2005.

[36] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Li-
dong Zhou. Transactional Flash. In Proceedings of the
USENIX Conference on Operating Systems Design and
Implementation, pages 147–160, USA, 2008.

[37] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagap-
pan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Can Applications Recover from fsync Fail-
ures? In Proceedings of the USENIX Annual Technical
Conference, pages 753–767, 2020.

[38] Reiser, H. ReiserFS. http://www.namesys.com,
2004.

[39] Kai Ren and Garth Gibson. TABLEFS: Enhancing
Metadata Efficiency in the Local File System. In Pro-
ceedings of the USENIX Annual Technical Conference,
pages 145–156, 2013.

[40] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:
The Linux B-Tree Filesystem. Trans. Storage, 9:9:1–
9:32, 2013.

[41] Samsung Electronics. Samsung Key Value
SSD enables High Performance Scaling.
https://www.samsung.com/semiconductor/
global.semi.static/Samsung_Key_Value_SSD_
enables_High_Performance_Scaling-0.pdf,
2017.

[42] Samsung Electronics. 860EVO SSD Specifica-
tion. https://www.samsung.com/semiconductor/
global.semi.static/Samsung_SSD_860_EVO_
Data_Sheet_Rev1.pdf, 2018.

90 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/oscarlab/betrfs
https://github.com/oscarlab/betrfs
https://www.percona.com/software/mysql-database/percona-tokudb
https://www.percona.com/software/mysql-database/percona-tokudb
https://www.percona.com/software/mysql-database/percona-tokudb
http://www.namesys.com
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf

[43] Samsung Electronics. 960PRO SSD Specifica-
tion. https://www.samsung.com/semiconductor/
minisite/ssd/product/consumer/ssd960/, 2019.

[44] Russell Sears and Raghu Ramakrishnan. bLSM: A Gen-
eral Purpose Log Structured Merge Tree. In Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data, pages 217–228, 2012.

[45] Muthian Sivathanu, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Somesh Jha. A Logic
of File Systems. In Proceedings of the USENIX
Conference on File and Storage Technologies, pages
1–1, 2005.

[46] SNIA. Key Value Storage API Specification Version
1.0. https://www.snia.org/tech_activities/
standards/curr_standards/kvsapi.

[47] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Ander-
son, Mike Nishimoto, and Geoff Peck. Scalability in
the XFS File System. In Proceedings of the USENIX
Annual Technical Conference, pages 1–1, 1996.

[48] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A Flexible Framework for File System
Benchmarking. The USENIX Magazine, 41, 2016.

[49] The Linux Foundation. Ext4 Filesystem documentation.
https://www.kernel.org/doc/Documentation/
filesystems/ext4.txt.

[50] Thomas N Theis and H-S Philip Wong. The end of
moore’s law: A new beginning for information technol-
ogy. Computing in Science & Engineering, 19(2):41–50,
2017.

[51] Rajat Verma, Anton Ajay Mendez, Stan Park,
Sandya Srivilliputtur Mannarswamy, Terence P. Kelly,
and Charles B. Morrey III. Failure-atomic updates of
application data in a linux file system. In Proceedings
of the USENIX Conference on File and Storage
Technologies, pages 203–211, 2015.

[52] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek
Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun
Cho. Barrier-Enabled IO Stack for Flash Storage. In
Proceedings of the USENIX Conference on File and
Storage Technologies, pages 211–226, 2018.

[53] Xilinxm, Inc. Xilinx Virtex UltraScale FPGA
VCU108 Evaluation Kit. https://www.xilinx.com/
products/boards-and-kits/ek-u1-vcu108-g.
html#hardware.

[54] Ziye Yang, James R Harris, Benjamin Walker, Daniel
Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao,
Jonathan Stern, Vishal Verma, and Luse E Paul. Spdk:

A development kit to build high performance storage
applications. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom),
pages 154–161. IEEE, 2017.

[55] Jeseong Yeon, Minseong Jeong, Sungjin Lee, and Eunji
Lee. RFLUSH: Rethink the Flush. In Proceedings of the
USENIX Conference on File and Storage Technologies,
pages 201–210, 2018.

[56] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael Bender, Martin
Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and
Donald E. Porter. Optimizing every operation in a write-
optimized file system. In Proceedings of the USENIX
Conference on File and Storage Technologies, pages
1–14, 2016.

[57] Yang Zhan, Alex Conway, Yizheng Jiao, Eric Knorr,
Michael A. Bender, Martin Farach-Colton, William Jan-
nen, Rob Johnson, Donald E. Porter, and Jun Yuan. The
full path to full-path indexing. In Proceedings of the
USENIX Conference on File and Storage Technologies,
pages 123–138, 2018.

[58] Teng Zhang, Jianying Wang, Xuntao Cheng, Hao Xu,
Nanlong Yu, Gui Huang, Tieying Zhang, Dengcheng
He, Feifei Li, Wei Cao, et al. FPGA-Accelerated Com-
pactions for LSM-based Key-Value Store. In Proceed-
ings of the USENIX Conference on File and Storage
Technologies, pages 225–237, 2020.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 91

https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.xilinx.com/products/boards-and-kits/ek-u1-vcu108-g.html#hardware
https://www.xilinx.com/products/boards-and-kits/ek-u1-vcu108-g.html#hardware
https://www.xilinx.com/products/boards-and-kits/ek-u1-vcu108-g.html#hardware

A Artifact Appendix

Abstract
KEVIN is composed of two main elements: KEVINSSD
(providing key-value interface with in-storage indexing) and
KEVINFS (providing file system abstraction). The artifact is
consisted of multiple Git repositories including KEVINSSD,
KEVINFS and others used for evaluation for KEVIN. Please
refer to the README file from https://github.com/dgist-
datalab/kevin.

Scope
The artifact includes all the necessary source code required
to run KEVIN as well as the benchmarks used in this paper.
As it takes several weeks to run all the benchmarks used in
this paper, we also provide exemplary benchmark suite with
tuned parameters.

Contents
We provide four Git repositories related to KEVIN. First, KEV-
INFS provides abstraction of files and directories (see §3.1,
§4 and §5.1). Second, KEVINSSD is the storage engine opti-
mized for in-storage indexing using LSM-tree (see §3.2, §3.3
and §5.2). Third, BLOCKSSD is another storage engine used
for comparison. Its FTL firmware uses page-level mapping
and provides the block interface to the host. BLOCKSSD is
used for comparison of traditional file systems in §6. Lastly,
we provide the kernel source used in this paper. It is based
on Linux kernel v4.15.18 and is further customized to run
KEVIN+TokuDB (see §6.2.4). KEVINFS also runs on this
kernel. Additionally, the DOI for the artifact includes a de-
tailed screencast of the tool along with results with example
workloads to prove the functionality of KEVIN.

Hosting
We provide the public Git URLs and commit hashes for each
repository used during the artifact evaluation.

• KEVINFS

https://github.com/dgist-datalab/kevin

1bd8566c580f8190364008f1a355fe337fcb6309

• KEVINSSD

https://github.com/dgist-datalab/KevinSSD

026e2a9bd274989b1324bdb9d008f2044e6d145d

• BLOCKSSD

https://github.com/dgist-datalab/BlockSSD

f944a94455f56a42ee3a888431b71d7e555b7671

• Kernel source used with KEVIN

https://github.com/dgist-datalab/linux/tree/kevin-4.15

Branch: kevin-4.15

c2b106a1de494c293f33c5f130435c2eaee02dcf

• The DOI for the artifact

10.5281/zenodo.4659803

https://zenodo.org/record/4659803

Requirements
We use the Xilinx Virtex R© UltraScaleTM FPGA VCU108
platform and customized NAND flash modules. The cus-
tomized NAND flash modules used in this paper are not pub-
licly or commercially available. Therefore, you may need
your own NAND modules compatible with VCU108 and ad-
equate modifications to the hardware backend (KEVINSSD
and BLOCKSSD) to replicate this work.

92 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/dgist-datalab/kevin
https://github.com/dgist-datalab/kevin
https://github.com/dgist-datalab/kevin
https://github.com/dgist-datalab/KevinSSD
https://github.com/dgist-datalab/BlockSSD
https://github.com/dgist-datalab/linux/tree/kevin-4.15
https://zenodo.org/record/4659803

	Introduction
	Background and Related Work
	Traditional Block I/O Interface
	Review of In-Storage Indexing
	File System over Key-value Store
	LSM-Tree Basics

	Overall Architecture of Kevin
	Mapping of File and Directory
	Indexing of KV Objects
	Mitigating Indexing Overhead

	Implementing VFS Operations
	Crash Consistency
	Maintaining Consistency in KevinFS
	Transaction Processing in KevinSSD

	Experiments
	Experimental Setup
	Experimental Results
	Results with Micro-benchmarks
	Results with Realistic Workloads
	Results under Aged File Systems
	Analyzing Effects of In-storage Indexing

	Conclusion
	Artifact Appendix

