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Abstract
Complex data queries, because of their need for random

accesses, have proven to be slow unless all the data can be
accommodated in DRAM. There are many domains, such as
genomics, geological data and daily twitter feeds where the
datasets of interest are 5TB to 20 TB. For such a dataset, one
would need a cluster with 100 servers, each with 128GB to
256GBs of DRAM, to accommodate all the data in DRAM.
On the other hand, such datasets could be stored easily in the
flash memory of a rack-sized cluster. Flash storage has much
better random access performance than hard disks, which
makes it desirable for analytics workloads. In this paper we
present BlueDBM, a new system architecture which has flash-
based storage with in-store processing capability and a low-
latency high-throughput inter-controller network. We show
that BlueDBM outperforms a flash-based system without these
features by a factor of 10 for some important applications.
While the performance of a ram-cloud system falls sharply
even if only 5%~10% of the references are to the secondary
storage, this sharp performance degradation is not an issue
in BlueDBM. BlueDBM presents an attractive point in the
cost-performance trade-off for Big Data analytics.

1. Introduction
By many accounts, complex analysis of Big Data is going to
be the biggest economic driver for the IT industry. For exam-
ple, Google has predicted flu outbreaks by analyzing social
network information a week faster than CDC [13]; Analysis of
twitter data can reveal social upheavals faster than journalists;
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Amazon is planning to use customer data for anticipatory ship-
ping of products [43]; Real-time analysis of personal genome
may significantly aid in diagnostics. Big Data analytics are
potentially going to have revolutionary impact on the way
scientific discoveries are made.

Big Data by definition doesn’t fit in personal computers or
DRAM of even moderate size clusters. Since the data may be
stored on hard disks, latency and throughput of storage access
is of primary concern. Historically, this has been mitigated
by organizing the processing of data in a highly sequential
manner. However, complex queries cannot always be orga-
nized for sequential data accesses, and thus high performance
implementations of such queries pose a great challenge. One
approach to solving this problem is ram cloud [34], where
the cluster has enough collective DRAM to accommodate the
entire dataset in DRAM. In this paper, we explore a much
cheaper alternative where Big Data analytics can be done with
reasonable efficiency in a single rack with distributed flash
storage, which has much better random accesses performance
than hard disks. We call our system BlueDBM and it provides
the following capabilities:
1. A 20-node system with large enough flash storage to host

Big Data workloads up to 20 TBs;
2. Near-uniform latency access into a network of storage de-

vices that form a global address space;
3. Capacity to implement user-defined in-store processing

engines;
4. Flash card design which exposes an interface to make

application-specific optimizations in flash accesses.
Our preliminary experimental results show that for some

applications, BlueDBM performance is an order of magnitude
better than a conventional cluster where SSDs are used only
as a disk replacement. BlueDBM unambiguously establishes
an architecture whose price-performance-power characteris-
tics provide an attractive alternative for doing similar scale
applications in a ram cloud.

As we will discuss in the related work section, almost every
element of our system is present in some commercial system.
Yet our system architecture as a whole is unique. The main
contributions of this work are: (1) Design and implementation
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of a scalable flash-based system with a global address space,
in-store computing capability and a flexible inter-controller
network. (2) A hardware-software codesign environment for
incorporating user-defined in-store processing engines. (3)
Performance measurements that show the advantage of such
an architecture over using flash as a drop-in replacement for
disks. (4) Demonstration of a complex data analytics appliance
which is much cheaper and consumes an order of magnitude
less power than the cloud-based alternative.

The rest of the paper is organized as follows: In Section 2
we explore some existing research related to our system. In
Section 3 we describe the architecture of our rack-level system,
and in Section 4 we describe the software interface that can
be used to access flash and the accelerators. In Section 5 we
describe a hardware implementation of BlueDBM, and show
our results from the implementation in Section 6. In Section 7
we describe and evaluate some example accelerators we have
built for the BlueDBM system. Section 8 summarizes our
paper.

2. Related Work
In Big Data scale workloads, building a cluster with enough
DRAM capacity to accommodate the entire dataset can be
very desirable but expensive. An example of such a system is
RAMCloud, which is a DRAM-based storage for large-scale
datacenter applications [34, 39]. RAMCloud provides more
than 64TBs of DRAM storage distributed across over 1000
servers networked over high-speed interconnect. Although
RAMCloud provides 100 to 1000 times better performance
than disk-based systems of similar scale, its high energy con-
sumption and high price per GB limits its widespread use
except for extremely performance and latency-sensitive work-
loads.

NAND-Flash-based SSD devices are gaining traction as
a faster alternative to disks, and close the performance gap
between DRAM and persistent storage. SSDs are an order of
magnitude cheaper price compared to DRAM, and an order
of magnitude faster performance compared to disk. Many
existing database and analytics software has shown improved
performance with SSDs [8, 21, 27]. Several SSD-optimized
analytics softwares, such as the SanDisk Zetascale [40] have
demonstrated promising performance while using SSD as the
primary data storage. Many commercial SSD devices have
adopted high-performance PCIe interface in order to overcome
the slower SATA bus interface designed for disk [11, 30, 16].
Attempts to use flash as a persistent DRAM alternative by
plugging it into a RAM slot are also being explored [45].

SSD storage devices have been largely developed to be a
faster drop-in replacement for disk drives. This backwards
compatibility has helped their widespread adoption. How-
ever, additional software and hardware is required to hide the
difference in device characteristics [1]. Due to the high perfor-
mance of SSDs, even inefficiencies in the storage management
software becomes significant, and optimizing such software

has been under active investigation. Moneta [4] modifies the
operating system’s storage management components to reduce
software overhead when accessing NVM storage devices. Wil-
low [41] provides an easy way to augment SSD controllers
with additional interface semantics that make better use of
SSD characteristics, in addition to a backwards compatible
storage interface. Attempts to remove the translation layers
and let the databse make high-level decisions [14] have shown
to be beneficial.

Due to their high performance, SSDs also affect the network
requirements. The latency to access disk over Ethernet was
dominated by the disk seek latency. However, in a SSD-based
cluster the storage access latency could even be lower than
network access. These concerns are being addressed by faster
network fabrics such as 10GbE and Infiniband [2], and by
low-overhead software protocols such as RDMA [29, 17, 38,
46, 29, 37] or user-level TCP stacks that bypass the operating
system [19, 15]. QuickSAN [5] is an attempt to remove a layer
of software overhead by augmenting the storage device with a
low-latency NIC, so that remote storage access does not need
to go through a separate network software stack.

Another important attempt to accelerate SSD storage per-
formance is in-store processing, where some data analytics is
offloaded to embedded processors inside SSDs. These proces-
sors have extremely low-latency access to storage, and helped
overcome the limitations of the storage interface bus. The
idea of in-store processing itself is not new. Intelligent disks
(IDISK) connected to each other using serial networks have
been proposed in 1998 [23], and adding processor to disk
heads to do simple filters have been suggested as early as in
the 1970s [28, 35, 3]. However, performance improvements
of such special purpose hardware did not justify their cost at
the time.

In-store processing is seeing new light with the advance-
ment of fast flash technology. Devices such as Smart
SSDs [9, 22, 41] and Programmable SSDs [6] have shown
promising results, but gains are often limited by the perfor-
mance of the embedded processors in such power constrained
devices. Embedding reconfigurable hardware in storage de-
vices is being investigated as well. For example, Ibex [48]
is a MySQL accelerator platform where a SATA SSD is cou-
pled with an FPGA. Relational operators such as selection
and group-by are performed on the FPGA whenever possible,
otherwise they are forwarded to software. Companies such
as IBM/Netezza [42] offload operations such as filtering to a
reconfigurable fabric near storage. On the other end of the
spectrum, systems such as XSD [6] embeds a GPU into a SSD
controller, and demonstrates high performance accelerating
MapReduce.

Building specialized hardware for databases have been ex-
tensively studied and productized. Companies such as Ora-
cle [33] have used FPGAs to offload database queries. FP-
GAs have been used to accelerate operations such as hash
index lookups [25]. Domain-specific processors for database
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queries are being developed [44, 47], including Q100 [49] and
LINQits [7]. Q100 is a data-flow style processor with an in-
struction set architecture that supports SQL queries. LINQits
mapped a query language called LINQ to a set of acceler-
ated hardware templates on a heterogeneous SoC (FPGA +
ARM). Both designs exhibited order of magnitude perfor-
mance gains at lower power, affirming that specialized hard-
ware for data processing is very advantageous. However, un-
like BlueDBM, these architectures accelerate computation on
data that is in DRAM. Accelerators have also been placed
in-path between network and processor to perform operations
at wire speed [32], or to collect information such as histogram
tables without overhead [18].

Incorporating reconfigurable hardware accelerators into
large datacenters is also being investigated actively. Microsoft
recently has built and demonstrated the power/performance
benefits of an FPGA-based system called Catapult [36]. Cat-
apult uses a large number of homogeneous servers each aug-
mented with an FPGA. The FPGAs form a network among
themselves via high-speed serial links so that large jobs can be
mapped to groups of FPGAs. Catapult was demonstrated to
deliver much faster performance while consuming less power,
compared to a normal ram cloud cluster. BlueDBM has similar
goals in terms of reconfigurable hardware acceleration, but it
uses flash devices to accelerate lower cost systems that do not
have enough collective DRAM to host the entire dataset.

This system improves upon our previous BlueDBM proto-
type [20], which was a 4-node system with less than 100GB
of slow flash. It was difficult to extrapolate the performance of
real applications from the results obtained from our previous
prototype, because of both its size and different relative perfor-
mance of various system components. The current generation
of BlueDBM has been built with the explicit goal of running
real applications, and will be freely available to the community
for developing Big Data applications.

3. System Architecture
The BlueDBM architecture is a homogeneous cluster of host
servers coupled with a BlueDBM storage device (See Fig-
ure 1). Each BlueDBM storage device is plugged into the
host server via a PCIe link, and it consists of flash storage, an
in-store processing engine, multiple high-speed network inter-
faces and on-board DRAM. The host servers are networked
together using Ethernet or other general-purpose networking
fabric. The host server can access the BlueDBM storage de-
vice via a host interface implemented over PCIe. It can either
directly communicate with the flash interface, to treat is as a
raw storage device, or with the in-store processor to perform
computation on the data.

The in-store processing engine has access to four major
services: The flash interface, network interface, host interface
and the on-storage DRAM buffer. Figure 1 and Figure 2
shows the four services available to the in-store processor. In
the following sections we describe the flash interface, network

interface and host interface in order. We omit the DRAM
buffer because there is nothing special about its design.

3.1. Flash Interface

Flash devices or SSDs achieve high bandwidth by grouping
multiple flash chips into several channels, all of which can
operate in parallel. Because NAND flash has limited pro-
gram/erase cycles and frequent errors, complex flash manage-
ment algorithms are required to guarantee reliability. These
include wear leveling, garbage collection, bit error correction
and bad block management. These functions are typically
handled by multiple ARM-based cores in the SSD controller.
The host side interface of an SSD is typically SATA or PCIe,
using AHCI or NVMe protocols to communicate with host.
SSDs are viewed as a typical block device to the host oper-
ating system, and its internal architecture and management
algorithms are completely hidden.

However, this additional layer of management duplicates
some file system functions and adds significant latency [26].
Furthermore, in a distributed storage environment, such as
BlueDBM, independent flash devices do not have a holistic
view of the system and thus cannot efficiently manage flash. Fi-
nally, in-store processors that we have introduced in BlueDBM
would also incur performance penalties if passing through this
extra layer. Thus in BlueDBM, we chose to shift flash manage-
ment away from the device and into file system/block device
driver (discussed in Section 4).
3.1.1. Interface for High Performance Flash Access Our
flash controller exposes a low-level, thin, fast and bit-error
corrected hardware interface to raw NAND flash chips, buses,
blocks and pages. This has the benefit of (i) cutting down
on access latency from the network and in-store processors;
(ii) exposing all degrees of parallelism of the device and (iii)
allowing higher level system stacks (file system, database
storage engine) to more intelligently manage data.

To access the flash, the user first issues a flash command
with the operation, the address and a tag to identify the request.
For writes, the user then awaits for a write data request from
the controller scheduler, which tells the user that the flash
controller is ready to receive the data for that write. The user
will send the write data corresponding to that request in 128-
bit bursts. The controller returns an acknowledgement once
write is finished. For read operations, the data is returned
in 128-bit bursts along with the request tag. For maximum
performance, the controller may send these data bursts out
of order with respect to the issued request and interleaved
with other read requests. Thus completion buffers may be
required on the user side to maintain FIFO characteristics.
Furthermore, we note that to saturate the bandwidth of the
flash device, multiple commands must be in-flight at the same
time, since flash operations can have latencies of 50 µs or
more.
3.1.2. Multiple Access Agents Multiple hardware endpoints
in BlueDBM may need shared access to this flash controller
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Figure 2: BlueDBM node architecture

interface. For example, a particular controller may be accessed
by local in-store processors, local host software over PCIe
DMA, or remote in-store processors over the network. Thus
we implemented a Flash Interface Splitter with tag renaming
to manage multiple users (Figure 3). In addition, to ease
development of hardware in-store processors, we also provide
an optional Flash Server module as part of BlueDBM. This
server converts the out-of-order and interleaved flash interface
into multiple simple in-order request/response interfaces using
page buffers. It also contains an Address Translation Unit that
maps file handles to incoming streams of physical addresses
from the host. The in-store processor simply makes a request
with the file handle, offset and length, and the Flash Server
will perform the flash operation at the corresponding physical
location. The software support for this function is discussed
in Section 4). The Flash Server’s width, command queue
depth and number of interfaces is adjustable based on the
application.

3.2. Integrated Storage Network

BlueDBM provides a low-latency high-bandwidth network in-
frastructure across all BlueDBM storage devices in the cluster,

Network 
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In-Storage 
Processor 

Host 
Interface 

Flash 
Interface 

Flash Interface 
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Figure 3: Flash interface

using a simple design with low buffer requirements. BlueDBM
storage devices form a separate network among themselves
via high-performance serial links. The BlueDBM network
is a packet-switched mesh network, in which each storage
device has multiple network ports and is capable of routing
packets across the network without requiring a separate switch
or router. In addition to routing, the storage network supports
functionality such as flow control and virtual channels while
maintaining high performance and extremely low latency. For
data traffic between the storage devices, the integrated network
ports removes the overhead of going to the host software to
access a separate network interface.

Figure 4 shows the network architecture. Switching is done
at two levels, the internal switch and the external switch. The
internal switch routes packets between local components. The
external switch accesses multiple physical network ports, and
is responsible for forwarding data from one port to another in
order to relay a packet to its next hop. It is also responsible for
relaying inbound packets to the internal switch, and relaying
outbound packets from the internal switch to a correct physical
port.

Due to the multiple ports on the storage nodes, the
BlueDBM network is very flexible and can be configured
to implement various topologies, as long as there is sufficient
number of ports on each node. Figure 5 shows some example
topologies. To implement a different topology the physical
cables between each node has to be re-wired, but the rout-
ing across a topology can be configured dynamically by the
software.
3.2.1. Logical Endpoint The BlueDBM network infrastruc-
ture exposes virtual channel semantics to the users of the
network by providing it with multiple logical endpoints. The
number of endpoints are determined at design time by setting a
parameter, and all endpoints share the physical network. Each
endpoint is parameterized with a unique index that does not
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Figure 5: Any network topology is possible as long as it re-
quires less than 8 network ports per node
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need to be contiguous. Each endpoint exposes two interfaces,
send and receive. An in-store processor can send data to a
remote node by calling send with a pair of data and destina-
tion node index, or receive data from remote nodes by calling
receive, which returns a pair of data and source node index.
These interfaces provide back pressure, so that each endpoint
can be treated like a FIFO interface across the whole cluster.
Such intuitive characteristics of the network ease development
of in-store processors.
3.2.2. Link Layer The link layer manages physical connec-
tions between network ports in the storage nodes. The most
important aspect of the link layer is the simple token-based
flow control implementation. This provides back pressure
across the link and ensures that packets will not drop if the
data rate is higher than what the network can manage, or if
the data cannot be received by the destination node which is
running slowly.

Endpoint 1

Endpoint 2

Endpoint 3

Switch
Node 2

Node 3

Endpoint 1

Endpoint 2

Endpoint 3

Switch

Node 1

Node 4

…

…

Figure 6: Packets from the same Endpoint to a destination
maintain FIFO order

3.2.3. Routing Layer In order to make maximum use of
the bandwidth of the network infrastructure while keeping
resource usage to a minimal, the BlueDBM network imple-
ments deterministic routing for each logical endpoint. This
means that all packets originating from the same logical end-
point that are directed to the same destination node follow the
same route across the network, while packets from a different
endpoint directed to the same destination node may follow a
different path. Figure 6 shows packet routing in an example
network. The benefits of this approach is that packet traffic
can be distributed across multiple links, while maintaining the
order of all packets from the same endpoint. If packets from
the same endpoint are allowed to take different paths, it would
require a completion buffer which may be expensive in an
embedded system. For simplicity, the BlueDBM network does
not implement a discovery protocol, and relies on a network
configuration file to populate the routing tables.

In order to maintain extremely low network latency, each
endpoint is given a choice whether to use end-to-end flow
control. If the developer is sure that a particular virtual link

will always drain on the receiving end, flow end-to-end flow
control can be omitted for that endpoint. However, if the
receiver fails to drain data for a long time, the link-level back
pressure may cause related parts of the network to block. On
the other hand, an endpoint can be configured to only send data
when there is space on the destination endpoint, which will
assure safety but result in higher latency due to flow control
packets, and more memory usage for buffers.

3.3. Host Interface

The in-store processing core can be accessed from the host
server over either a direct interface that supports RPC and
DMA operations, or a file system abstraction built on top of
the direct interface. The file system interface is described in
detail in Section 4.

In order to parallelize requests and maintain high perfor-
mance, the host interface provides the software with 128 page
buffers, each for reads and writes. When writing a page, the
software will request a free write buffer, copy data to the write
buffer, and send a write request over RPC with the physical ad-
dress of the destination flash page. The buffer will be returned
to the free queue when the hardware has finished reading the
data from the buffer. When reading a page, the software will
request a free read buffer, and send a read request over RPC
with the physical address of the source flash page. The soft-
ware will receive an interrupt with the buffer index when the
hardware has finished writing to software memory.

Using DMA to write data to the storage device is straight-
forward to parallelize, but parallelizing reads is a bit more
tricky due to the characteristics of flash storage. When writing
to storage, the DMA engine on the hardware will read data
from each buffer in order in a contiguous stream. So hav-
ing enough requests in the request queue is enough to make
maximum use of the host-side link bandwidth. However, data
reads from flash chips on multiple buses in parallel can arrive
interleaved at the DMA engine. Because the DMA engine
needs to have enough contiguous data for a DMA burst before
issuing a DMA burst, some reordering may be required at the
DMA engine. This becomes even trickier when the device
is using the integrated network to receive data from remote
nodes, where they might all be coming from different buses.
To fix this issue, we provide dual-ported buffer in hardware
which has the semantics of a vector of FIFOs, so that data for
each request can be enqueued into its own FIFO until there is
enough data for a burst. Figure 7 describes the structure of the
host interface for flash reads.

4. Software Interface
In BlueDBM, we aim to provide a set of software interfaces
that support the execution of any existing application as well
as modified applications that leverage the in-store processors
in the system. Furthermore, software layers in BlueDBM must
perform flash management functions since we chose to expose
a raw flash interface in hardware for higher efficiency (pre-
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viously discussed in Section 3.1). The software architecture
is shown in Figure 8. Three interfaces are supplied to the
user application: (i) a file system interface, (ii) a block device
driver interface and (iii) an accelerator interface.

We first discuss the file system. Commercial SSDs incorpo-
rate a Flash Translation Layer (FTL) inside the flash device
controller to manage flash and maintains a block device view
to the operating system. However, common file systems man-
age blocks in a fashion optimized for hard disks. SSDs use the
FTL to emulate block device interfaces for compliance with
operating systems, performing logical-to-physical mapping
and garbage collection, which require large DRAM and incur
lots of extra I/Os. Some file systems have tried to remedy this
by refactoring the I/O architecture in order to offload most of
the FTL functions into a flash-optimized log-structured file
system. A prominent example of this is RFS [26]. Unlike
conventional FTL designs where the flash characteristics are
hidden from the file system, RFS performs some functionality
of an FTL, including logical-to-physical address mapping and
garbage collection. This achieves better garbage collection ef-
ficiency at much lower memory requirement. The file system
interface in BlueDBM is built on the same paradigm.

For compatibility with existing software, BlueDBM also
offers a full-fledged FTL implemented in the device driver,
similar to Fusion IO’s driver. This allows us to use well-known
Linux file systems (e.g., ext2/3/4) as well as database systems
(directly running on top of a block device) with BlueDBM.

The BlueDBM software allows developers to easily make
use of fast in-storage processing without any efforts to write
their own custom interfaces manually. Figure 8 shows how
user-level applications access hardware accelerators. In the
BlueDBM software stack, user-level applications can query
the file system for the physical locations of files on the flash
(see (1) in Figure 8). This was made possible because the file
system maintains the mapping information. Applications can
then provide in-storage processors with a stream of physical
addresses (see (2)), so that the in-storage processors can di-
rectly read data from flash with very low latency (see (3)). The
results are sent to software memory and the user application
can be notified (see (4)).

It is worth noting that, in BlueDBM, all the user requests,
including both user queries and data, are sent to the hardware
directly, bypassing almost all of the operating system’s kernel,
except for essential driver modules. This helps us to avoid deep
OS kernel stacks that often cause long I/O latencies. It is also

very common that multiple instances of a user application may
compete for the same hardware acceleration units. For efficient
sharing of hardware resources, BlueDBM runs a scheduler that
assigns available hardware-acceleration units to competing
user-applications. In our implementation, a simple FIFO-
based policy is used for request scheduling.
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Figure 8: Software interface

5. Hardware Implementation
We have built a 20-node BlueDBM cluster to explore the
capabilities of the architecture. Figure 9 shows the photo of
our implementation.

Host Server

BlueDBM Storage

Host Server

BlueDBM Storage

Host Server

BlueDBM Storage

Host Server

BlueDBM Storage

…

SATA
cables

Ethernet

PCIe

Figure 9: A 20-node BlueDBM cluster

In our implementation of BlueDBM, we have used a Field
Programmable Gate Array (FPGA) to implement the in-store
processor and also the flash, host and network controllers.
However, the BlueDBM Architecture should not be limited to
an FPGA-based implementation. Development of BlueDBM
was done in the high-level hardware description language
Bluespec. It is possible to develop in-store processors in any
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hardware description language, as long as they conform to the
interface exposed by the BlueDBM system services. Most of
the interfaces are latency-insensitive FIFOs with backpressure.
Bluespec provides a lot of support for such interfaces, making
in-store accelerator development easier.

The cluster consists of 20 rack-mounted Xeon servers, each
with 24 cores and 50GBs of DRAM. Each server also has
a Xilinx VC707 FPGA development board connected via a
PCIe connection. Each VC707 board hosts two custom-built
flash boards with SATA connectors. The VC707 board, cou-
pled with two custom flash boards is mounted on top of each
server. The host servers run the Ubuntu distribution of Linux.
Figure 10 shows the components of a single node. One of
the servers also had a 512GB Samsung M.2 PCIe SSD for
performance comparisons.

We used Connectal [24] and its PCIe Gen 1 implementation
for the host link. Connectal is a hardware-software codesign
framework built by Quanta Research. Connectal reads the
interface definition file written by the programmer and gen-
erates glue logic between hardware and software. Connectal
automatically generates RPC-like interface from developer-
provided interface specification, as well as a memory-mapped
DMA interface for high bandwidth data transfer. Connec-
tal’s PCIe implementation caps our performance at 1.6GB/s
reads and 1GB/s writes, which is a reasonable performance
for a commodity flash storage device. In the future we will
also explore the benefits of a faster host link including later
generation PCIe links.

PCIe

Virtex7
FPGA

FM
C

DRAM

FM
C

SATA
ports

Flash
Chips

Artix7
FPGA

Artix7
FPGA

Xilinx VC707 PCIe
DRAM

Virtex7

Flash

Artix7

Figure 10: A BlueDBM storage node

5.1. Custom Flash Board

We have designed and built a high-capacity custom flash board
with high-speed serial connectors, with the help of Quanta
Inc., and Xilinx Inc.

Each flash card has 512GBs of NAND flash storage and a
Xilinx Artix 7 chip, and plugs into the host FPGA develop-
ment board via the FPGA Mezzanine Card (FMC) connector.
The flash controller and Error Correcting Code (ECC) is imple-
mented on this Artix chip, providing the Virtex 7 FPGA chip
on the VC707 a logical error-free access into flash. The com-
munication between the flash board and the Virtex 7 FPGA
is done by a 4-lane aurora channel, which is implemented
on the GTX/GTP serial transceivers included in each FPGA.

This channel can sustain up to 3.3GB/s of bandwidth at 0.5µs
latency. The flash board also hosts 8 SATA connectors, 4 of
which pin out the high-speed serial ports on the host Virtex 7
FPGA, and 4 of whch pin out the high-speed serial ports on
the Artix 7 chip. The serial ports are capable of 10Gbps and
6.6Gbps of bandwidth, respectively.

5.2. Network Infrastructure

In our BlueDBM implementation, the link is implemented
over the low-latency serial transceivers. By implementing
routing in the hardware and using a very low-latency network
fabric, we were able to achieve very high performance, with
less than 0.5µs of latency per network hop, and near 10Gbps
of bandwidth per link. Our implementation has a network
fan-out of 8 ports per storage node, so the aggregate network
bandwidth available to a node reaches up to 8GB/s, including
packet overhead.

5.3. Software Interface

Our host interface is implemented using Connectal [24]. Con-
nectal provides a PCIe Gen 1 endpoint and driver pair, and
provides up to 1.6GB/s DMA read to host DRAM bandwidth
and 1GB/s of DMA write from host DRAM bandwidth. Read-
ing or writing data from the host buffers were done by DMA
read/write engines implemented in the Connectal framework.
In our BlueDBM implementation, there are four read engines
and four write engines each, in order to more easily make
maximum use of the PCIe bandwidth.

6. Evaluation

This section evaluates the characteristics of the BlueDBM
implementation.

6.1. FPGA Resource Utilization

The FPGA resource usage of each of the two Artix-7 chips
are shown in Table 1. 46% of the I/O pins were used either to
communicate with the FMC port or to control the flash chips.

Module Name # LUTs Registers BRAM

Bus Controller 8 7131 4870 21
→ ECC Decoder 2 1790 1233 2
→ Scoreboard 1 1149 780 0
→ PHY 1 1635 607 0
→ ECC Encoder 2 565 222 0
SerDes 1 3061 3463 13

Artix-7 Total 75225 (56%) 62801 (23%) 181 (50%)

Table 1: Flash controller on Artix 7 resource usage

The FPGA resource usage of the Virtex 7 FPGA chip on
the VC707 board is shown in Table 2. As it can be seen, there
is still enough space for accelerator development on the Virtex
FPGA.

7



Module Name # LUTs Registers RAMB36 RAMB18

Flash Interface 1 1389 2139 0 0
Network Interface 1 29591 27509 0 0
DRAM Interface 1 11045 7937 0 0
Host Interface 1 88376 46065 169 14

Virtex-7 Total 135271 135897 224 18
(45%) (22%) (22%) (1%)

Table 2: Host Virtex 7 resource usage

6.2. Power Consumption

Table 3 shows the overall power consumption of the system,
which were estimated using values from the datasheet. Each
Xeon server includes 24 cores and 50GBs of DRAM. Thanks
to the low power consumption of the FPGA and flash devices,
BlueDBM adds less than 20% of power consumption to the
system.

Component Power (Watts)

VC707 30
Flash Board x2 10
Xeon Server 200
Node Total 240

Table 3: BlueDBM estimated power consumption

6.3. Network Performance

We measured the performance of the network by transferring
a single stream of 128 bit data packets through multiple nodes
across the network in a non-contentious traffic setting. The
maximum physical link bandwidth is 10Gbps, and per-hop
latency is 0.48 µs. Figure 11 shows that we are able to sustain
8.2Gbps of bandwidth per stream across multiple network
hops. This shows that the protocol overhead is under 18%.
The latency is 0.48 µs per network hop, the end-to-end latency
is simply a multiple of network hops to the destination.

Each node in our BlueDBM implementation includes a fan-
out of 8 network ports, so each node can have an aggregate
full duplex bandwidth of 8.2GB/s. With such a high fan-out,
it would be unlikely that a remote node in a rack-class cluster
to be over 4 hops, or 2 µs away. In a naive ring network of
20 nodes with 4 lanes each to next and previous nodes, the
average latency to a remote node is 5 hops, or 2.5 µs. The ring
throughput is 32.8 Gbps. Assuming a flash access latency of
50 µs, such a network will only add 5% latency in the worst
case, giving the illusion of a uniform access storage.

6.4. Remote Storage Access Latency

We measured the latency of remote storage access by read-
ing an 8K page of data from the following sources using the
integrated storage network:
1. ISP-F: From in-store processor to remote flash storage;
2. H-F: From host server to remote flash storage;
3. H-RH-F: From host server to remote flash storage via its

host server.

4. H-D: From host server to remote DRAM;
In each case, the request is sent from either the host server

or the in-store processor on the local BlueDBM node. In the
third and fourth case, the request is processed by the remote
server, instead of the remote in-store processor, adding extra
latency. However, data is always transferred back via the
integrated storage network. We could have also measured
the accesses to remote servers via Ethernet, but that latency
is at least 100x of the integrated network, and will not be
particularly illuminating.

The latency is broken up into four components as shown in
Figure 14. First is the local software overhead of accessing the
network interface. Second is the storage access latency, or the
time it takes for the first data byte to come out of the storage
device. Third is the amount of times it takes to transfer the
data until the last byte is sent back over the network, and last
is the network latency.

Figure 12 shows the exact latency breakdown for each ex-
periment. Notice in all 4 cases, the network latency is insignif-
icant. The data transfer latency is similar except when data
is transferred from DRAM (H-D), where it is slightly lower.
Notice that except in the case of ISP-F, storage access incurs
the additional overhead of PCIe and host software latencies.
If we compare ISP-F to H-RH-F, we can see the benefits of an
integrated storage network, as the former allows overlapping
the latencies of storage and network access.

6.5. Storage Access Bandwidth

We measured the bandwidth of BlueDBM by sending a stream
of millions of random read requests for 8KB size pages to local
and remote storage nodes, and measuring the elapsed time to
process all of the requests. We measured the bandwidth under
the following scenarios:
1. Host-Local: Host sends requests to the local flash and all

data is streamed returned over PCIe;
2. ISP-Local: Host sends requests to the local flash and all

data is consumed at the local in-store processor;
3. ISP-2Nodes: Like ISP-Local except 50% of the requests

are sent to a remote flash controller. Only one serial link
connects the two nodes;

4. ISP-3Nodes: Like ISP-Local except 33% of the requests
are sent to each of the two remote flash controllers. Two
serial links connect each remote controller to the local
controller.
Figure 13 shows the read bandwidth performance for each

of these cases. Our design of the flash card provides 1.2GB/s
of bandwidth per card. Therefore in theory, if both cards
are kept completely busy 2.4GB/s should be the maximum
sustainable bandwidth from the in-store processor, and this is
what we observe in the ISP-Local experiment. In our Host-
Local experiment, we observed only 1.6GB/s of bandwidth.
This is because this is the maximum bandwidth our PCIe
implementation can sustain. In ISP-2Nodes, the aggregate
bandwidth of two flash devices should add up to 4.8GB/s, but
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we only observe about 3.4GB/s, because remote storage access
is limited by the single 8Gbps-serial link. In ISP-3Nodes, the
aggregate bandwidth of three flash devices should add up
to 7.2GB/s, but we only observe about 6.5GB/s because the
aggregate bandwidth of the four serial links connecting the
remote controllers is limited to 32.8Gbps (=4.1GB/s).

What these sets of experiments show is that in order to make
full use of flash storage, some combination of fast networks,
fast host connections and low software overhead is necessary.
These requirements can be somewhat mitigated if we make use
of in-store computing capabilities, which is what we discuss
next.

7. Application Acceleration
In this section, we demonstrate the performance and benefits
of the BlueDBM architecture by presenting some accelerator
demonstrations.

7.1. Nearest Neighbor Search

Description: Nearest neighbor search is required by many
applications, e.g., image querying. One of the modern tech-
niques in this field is Locality Sensitive Hashing [12]. LSH
hashes the dataset using multiple hash functions, so that simi-
lar data is statistically likely to be hashed to similar buckets.
When querying, the query is hashed using the same hash func-
tions, and only the data in the matching buckets are actually

Storage Access
Latency

Data Transfer
Latency

Network
Latency

Software
LatencyNetwork

Latency

Software
Latency

Host SW

Local Storage

Remote Storage

Flash Chip

Figure 14: Breakdown of remote storage access latency

Locality-sensitive 
hash table Data 

Figure 15: Data accesses in LSH are randomly distributed

compared. The bulk of the work during a query process is
traversing hash buckets and reading the corresponding data
to perform distance calculation. Because data pointed to by
the hash buckets are most likely scattered across the dataset,
access patterns are quite random (See Figure 15).

We have built a LSH query accelerator, where all of the data
is stored in flash and the distance calculation is done by the
in-store processor on the storage device. For simplicity, we
assume 8KB data items, and calculate the hamming distance
between the query data and each of the items in the hash
bucket. The software sends a stream of addresses from a hash
bucket along with the query data page, and the system returns
the index of the data item most closely matching the query.
Since we do not expect any performance difference for queries
emanating from two different hash buckets, we simply send
out a million nearest-neighbor searches for the same query.

Evaluation: In this study, we were interested in evaluating
and comparing the benefits of flash storage (as opposed to
DRAM) and in-store processors. We also wanted to com-
pare the BlueDBM design with off-the-shelf SSDs with PCIe
interface. The following experiments aims to evaluate the
performance of each system during various access patterns,
such as random or sequential access, and when accesses are
partially serviced by secondary storage.

We have used a commercially available M.2 mPCIe
SSD, whose performance, for 8KB accesses, was limited
to 600MB/s. Since BlueDBM performance is much higher
(2.4GB/s), we also conducted several experiments with
BlueDBM throttled to 600MB/s. Since performance should
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scale linearly with the number of nodes for this application,
we concentrated on various configurations in a single node
setting:
1. Baseline: BlueDBM with in-store acceleration;
2. Baseline-T: Throttled BlueDBM with in-store acceleration;
3. H-DRAM: Multithread software on multi-core host access-

ing host DRAM as storage;
4. H-F Throttled: Multithreaded software on multi-core host

accessing Throttled BlueDBM as storage;
5. DRAM + 10% Flash: Same as H-DRAM with 10% ac-

cesses to SSD;
6. DRAM + 5% Disk: Same as H-DRAM with 5% accesses

to HDD;
7. H-RFlash: Multithreaded software on multi-core host ac-

cessing Off-the-shelf SSD;
8. H-SFlash: Same as H-RFlash except data accesses are

artificially arranged to be sequential.
Figure 16 shows the relative performance of a throttled

BlueDBM (Baseline-T) and multithreaded software accessing
data on host DRAM (H-DRAM), with Baseline BlueDBM.
The baseline performance we observed on BlueDBM was
320K Hamming Comparisons per second. There are two
important takeaways from this graph. (1) BlueDBM can keep
up with DRAM-resident data for up to 4 threads, because
host is getting compute-bound. However, as more threads
are added, performance will scale, until DRAM bandwidth
becomes the bottleneck. Since DRAM bandwidth as compared
to flash bandwidth is very high, DRAM-based processing wins
with enough resources. (2) Native flash speed matters i.e.,
when flash performance is throttled to 1/4th of the maximum,
the performance drops accordingly. The relationship between
flash performance and application performance will not be so
simple if flash was being accessed by software.

To make the comparisons fair, we conducted a set of experi-
ments shown in Figures 17, 18, 19 using throttled BlueDBM
as the baseline.

Results of DRAM + 5% Disk and DRAM + 10% Flash
experiments shown in Figure 17 show that the performance of
ram cloud (H-DRAM) falls off very sharply if even a small
fraction of data does not reside in DRAM. Assuming 8 threads,

the performance drops from 350K Hamming Comparisons
per second to < 80K and < 10K Hamming Comparisons
per second for DRAM + 10% Flash and DRAM + 5% Disk,
respectively. At least one commercial vendor has observed
similar phenomena and claimed that even when 40% of data
fits on DRAM, performance of Hadoop decreases by an order
of magnitude [10]. Complex queries on DRAM show high
performance only as long as all the data fits in DRAM.

The Off-the-shelf SSD experiment H-RFlash results in Fig-
ure 18 showed that its performance is poor as compared to even
throttled BlueDBM. However, when we artificially arranged
the data accesses to be sequential, the performance improved
dramatically, sometimes matching throttled BlueDBM. This
suggests that the Off-the-shelf SSD may be optimized for
sequential accesses.

Figure 19 comparing Baseline-T and H-F Throttled shows
the advantage of accelerators. In this example, the accelerator
advantage is at least 20%. Had we not throttled BlueDBM,
the advantage would have been 30% or more. This is be-
cause while the in-store processor can process data at full
flash bandwidth, the software will be bottlenecked by the PCIe
bandwidth at 1.6GB/s. We expect this advantage to be larger
for applications requiring more complex accelerators Com-
pared to a fully flash-based execution, BlueDBM performs an
order of magnitude faster.

7.2. Graph Traversal

Description: Efficient graph traversal is a very important
component of any graph processing system. Fast graph traver-
sal enables solving many problems in graph theory, including
maximum flow, shortest path and graph search. It is also a
very latency-bound problem because one often cannot pre-
dict the next node to visit, until the previous node is visited
and processed. We demonstrate the performance benefits of
our BlueDBM architecture by implementing distributed graph
traversal that takes advantages of the in-store processor and
the integrated storage network, which allows extremely low-
latency access into both local and remote flash storage.

Evaluation: Graph traversal algorithms often involve depen-
dent lookups. That is, the data from the first request determines
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the next request, like a linked-list traversal at the page level.
Since such traversals are very sensitive to latency, we con-
ducted the experiments with settings that are very similar to
the settings in Section 6.4.
1. IPS-F: In-store processor requests data from remote storage

over integrated network
2. H-F: Software requests data from remote storage over inte-

grated network
3. H-RH-F: Software requests data from remote software to

read from flash
4. DRAM + 50% F: Store requests data from remote software.

50% chance of hitting flash
5. DRAM + 30% F: Store requests data from remote software.

30% chance of hitting flash
6. H-DRAM: Software requests data from remote software.

Data read from DRAM
As expected the results in Figure 20 show that the integrated

storage network and in-store processor together show almost a
factor of 3 performance improvement over generic distributed
SSD. This performance difference is large enough that even
when 50% of the accesses can be accommodated by DRAM,
performance of BlueDBM is still much higher.

The performance difference between H-F and H-RH-F il-
lustrates the benefits of using the integrated network to reduce
a layer of software access. Performance of ISP-F compared to
H-F shows the benefits of further reducing software overhead
by having the ISP manage the graph traversal logic.

7.3. String Search

Description: String search is common operation in analyt-
ics, often used in database table scans, DNA sequence match-
ing and cheminformatics. It is primarily a sequential read and
compare workload. We examine its performance on BlueDBM
with assistance from in-store Morris-Pratt (MP) string search
engines [31] fully integrated with the file system, flash con-
troller and application software. The software portion of string
search initially sets up the accelerator by transferring the target
string pattern (needle) and a set of precomputed MP constants
over DMA. Then it consults the file system for a list of phys-
ical addresses of the files to search (haystack). This list is
streamed to the accelerator, which uses these addresses to re-
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Figure 21: String search bandwidth and CPU utilization

quest for pages from the flash controller. The accelerated MP
engines may operate in parallel either by searching multiple
files or by dividing up the haystack into equal segments (with
some overlaps). This choice depends on the number of files
and size of each file. Since 4 read commands can saturate a
single flash bus, we use 4 engines per bus to maximize the
flash bandwidth. Only search results are returned to the server.

Evaluation: We compared our implementation of hardware-
accelerated string search running on BlueDBM to the Linux
Grep utility querying for exact string matches running on
both SSD and hard disk. Processing bandwidth and server
CPU utilizations are shown in Figure 21. We observe that
the parallel MP engines in BlueDBM are able to process a
search at 1.1GB/s, which is 92% of the maximum sequential
bandwidth a single flash board. Using BlueDBM, the query
consumes almost no CPU cycles on the host server since the
query is entirely offloaded and only the location of matched
strings are returned, which we assume is a tiny fraction of the
file (0.01% is used in our experiments). This is 7.5x faster
than software string search (Grep) on hard disks, which is
I/O bound by disk bandwidth and consumes 13% CPU. On
SSD, software string search remains I/O bound by the storage
device, but CPU utilization increases significantly to 65% even
for this type of simple streaming compare operation. This high
utilization is problematic because string search is often only
a small portion of more complex analytic queries that can
quickly become compute bound. As we have shown in the
results, BlueDBM can effectively alleviate this by offloading
search to the in-store processor thereby freeing up the server
CPU for other tasks.

8. Conclusion and Future Work

We have presented BlueDBM, an appliance for Big Data ana-
lytics that uses flash storage, in-store processing and integrated
networks for cost-effective analytics of large datasets. A rack-
size BlueDBM system is likely to be an order of magnitude
cheaper and less power hungry than a cloud based system
with enough DRAM to accommodate 10TB to 20TB of data.
We have demonstrated the performance benefits of BlueDBM
using simple examples on large amounts of data in compari-
son to a generic flash-based system without such architectural
improvements. We have also shown that the performance of
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a system which relies on data being resident in DRAM, falls
rapidly if even a small fraction of data has to reside in sec-
ondary storage. BlueDBM like architecture does not suffer
from this problem because flash based systems with 10TB to
20TB of storage are very affordable.

Our current implementation uses an FPGA to implement
most of the new architectural features, that is, in-store pro-
cessors, integrated network routers, flash controllers. It is
straightforward to implement most of these features using
ASICs and provide some in-store computing capability via
general-purpose processors. This will simultaneously improve
the performance and lower the power consumption even fur-
ther. Notwithstanding such developments we are developing
tools to make it easy to develop in-store processors for the
reconfigurable logic inside BlueDBM.

We are currently developing or planning to develop several
new applications including: SQL Database Acceleration by
offloading query processing and filtering to in-store proces-
sors, Sparse-Matrix Based Linear Algebra Acceleration and
BlueDBM-Optimized MapReduce, which attempts to optimize
data flow of MapReduce to best fit an SSD-based cluster with
in-store processors. We plan to collaborate with other research
groups to explore more applications.
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