
Improving Performance and Lifetime of Large-Page NAND
Storages Using Erase-Free Subpage Programming

†Myungsuk Kim, †Jaehoon Lee, ‡Sungjin Lee, †Jisung Park, †Jihong Kim
†Seoul National University, ‡Inha University

{morssola75, jhoonl89, jspark, jihong}@davinci.snu.ac.kr, sungjin.lee@inha.ac.kr

ABSTRACT
Recent NAND flash devices have large page sizes. Although
large pages are useful in increasing the flash capacity, they
can degrade both the performance and lifetime of flash stor-
age systems when small writes are dominant. We propose
a new NAND programming scheme, called erase-free sub-
page programming (ESP), which allows the same page to be
programmed multiple times for small writes. By avoiding in-
ternal fragmentation, the ESP scheme reduces the overhead
of garbage collection for large-page NAND storages. Experi-
mental results show that an ESP-aware FTL can improve the
IOPS and lifetime by up to 74% and 177%, respectively.

1. INTRODUCTION
With continuing semiconductor process scaling (e.g., 10

nm-node process technology [1]) and various technical inno-
vations (such as 3D VNAND [2]), the NAND device capacity
has been significantly increased in a cost-effective fashion.
For example, the NAND device capacity has increased by
about 8 times from 16 GB (in 4x nm-node in 2008) to 128
GB (in 1x nm-node in 2016) while improving the cost-per-
bit of NAND devices by about 7 times under the same form
factor [1]. Although this rapid increase in the NAND device
capacity has enabled many new market opportunities for
flash-based storage systems, these high-capacity NAND de-
vices also present several new technical challenges for maxi-
mizing their potential benefits at the storage system level. In
this paper, we focus on large-page problem of high-capacity
NAND devices.
As shown in Fig. 1, the NAND page size, which was ini-

tially 256 B, has steadily increased up to 16 KB in 2016
[1, 2] as with the increasing NAND device capacity. When
the NAND device capacity gets higher, a larger page size
is preferred because of two main reasons. First, a larger
NAND page can achieve a higher I/O bandwidth. This is
because more cells can be simultaneously read/written on
larger NAND pages while the fixed I/O management cost
(such as a handshaking cost between a SW driver and a
NAND device) can be better amortized over a large amount
of data. Second, although there is no technical barrier to
supporting a smaller page size for high-capacity NAND de-
vices, such NAND devices would be less cost-efficient. This
is because they need additional peripheral circuits to access
a large number of smaller pages, thus significantly increasing
the overall NAND chip size.
Although, from the I/O bandwidth and cost perspective,

a large page size is desirable in high-capacity NAND de-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC’17 June 18-22, 2017, Austin, TX, USA

c© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062264

0

100

200

300

400

500

600

700

800

0

4

8

12

16

20

24

300 200 130 70 60 50 4X 3X 2X 2Y 1X 1Y

P
a

g
e

 s
iz

e
 (

K
B

)

Technology node (nm)

N
A

N
D

 c
a

p
a

c
it

y
 (

G
b

)

~2000 ~2005 ~2010 ~2016

0.0

1.0

2.0

3.0

0.0

0.5

1.0

1.5

2.0

300 200 130 70

256B

2KB

Figure 1: Trend of the NAND page size and capacity.

vices, it can cause a serious performance degradation at the
storage system level, in particular, when small writes are
dominant. (In this paper, when the size of a write request
is smaller than the size of a physical NAND page, we call
such a write request small). In a conventional page-level
mapping scheme, which we call a coarse-grained mapping
(CGM) scheme, a small write would be mapped to a full
page, wasting a large portion of the full page. Because of
internal fragmentation, when small writes are dominant, the
overhead of garbage collection (GC) significantly increases.
When a large percentage of writes are small updates, the
performance of the CGM scheme drops sharply by expen-
sive read-modify-write (RMW) operations. Even if only a
part of the full page is changed by a small write, the modi-
fied full page should be written after reading and modifying
the full page. When small updates are dominant, for exam-
ple, the IOPS of the CGM scheme may drop to about 15%
of the peak IOPS because of frequent RMW operations.

A common solution to the poor performance of the CGM
scheme with small writes is to employ a fine-grained map-
ping (FGM) scheme where the size of a logical page is smaller
than that of a NAND page. In the FGM scheme, a write
buffer is used so that small writes can be merged into full-
page writes before they are flushed to a flash storage sys-
tem. In the FGM scheme, if small writes can be merged
into full-page writes, no internal fragmentation occurs, thus
not affecting the GC efficiency. If a small update is made
by the size of a logical page in the FGM scheme, a small
update becomes a simple out-place write, which does not
require RMW operations. Although the FGM scheme works
generally better than the CGM scheme, when small writes
cannot be merged into full-page writes, the GC efficiency in
the FGM scheme is quickly deteriorated to the level in the
CGM scheme. For example, when small writes are mostly
synchronous requests, they must be stored right away and
miss an opportunity to be merged in the write buffer. Since
many real workloads exhibit this characteristics, the FGM
scheme shows large fluctuations in performance and lifetime
depending on workload characteristics. Another main draw-
back of the FGM scheme is that it requires a very large

This research was supported by the National Research Foundation
of Korea (NRF) grant funded by the Ministry of Science, ICT and
Future Planning (MSIP) (NRF-2015M3C4A7065645). The ICT at
Seoul National University provided research facilities for this study.
(Corresponding Author: Jihong Kim)

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:26:23 UTC from IEEE Xplore. Restrictions apply.

logical-to-physical (L2P) mapping table because L2P map-
ping is based on a smaller logical page.
In this paper, we propose a new system-level technique

that solves the large-page problem of high-capacity NAND
devices. Our proposed technique is based on a new NAND
programming scheme, called erase-free subpage programming
(ESP), which allows the same NAND page to be programmed
multiple times in a sequential subpage order with the re-
duced retention capability. Since a small write can be ser-
viced using a subpage write, there is no internal fragmen-
tation for small writes in the ESP scheme, thus improving
the performance and lifetime of a flash-based storage system
even when synchronous small writes are dominant.
Since the ESP scheme reduces the data retention time of

subpages (over full pages) as a side effect of subpage pro-
gramming, it is important for an FTL to monitor the data
retention requirement of small writes. When data require
longer retention times than the retention capability of the
subpage, the FTL needs to reclaim them to different pages.
Based on the proposed ESP scheme with an adaptive reten-
tion management technique, we have implemented an ESP-
aware FTL, called subFTL, which stores small writes into
subpages in an erase-free fashion, thus significantly reducing
the GC overhead of for large-page NAND storage systems.
Our experimental results using various benchmark programs
show that subFTL can improve the IOPS and lifetime by up
to 74% and 177% respectively, over the FGM-based FTL.
In subFTL, we also significantly reduced the L2P mapping
memory requirement over the FGM scheme by managing the
subpage region and full-page region with different mapping
methods in a hybrid fashion.
The rest of this paper is organized as follows. In Section

2, we evaluate how small writes affect the performance and
lifetime of flash storages. Section 3 describes the proposed
ESP scheme. In Section 4, we present the design and imple-
mentation of subFTL. Experimental results follow in Section
5, and related work is summarized in Section 6. Section 7
concludes with a summary and future work.

2. IMPACT OF SMALL WRITES ON PER-

FORMANCE AND LIFETIME
Before we describe the proposed ESP scheme, we present

how the performance and lifetime of a flash storage system
are affected by small writes under the CGM scheme and
FGM scheme. Since small writes affect mostly the GC effi-
ciency, in this section, we focus on understanding the impact
of each scheme on the GC overhead. We assume that the
size of a write request is given by a multiple of the subpage
size Ssub which is 1/Nsub of the full-page size Sfull (i.e.,
Sfull = Nsub × Ssub). Furthermore, we define that the re-
quest WAF w(r) of a small request r with the size s to be
sflash/s where sflash represents the size of data written to
the flash memory for the request r. For example, in the
CGM scheme, when a 4-KB write request r1 was written to
a 16-KB full page, w(r1) is 4.
In order to understand the impact of small writes on the

overall storage performance, we measured IOPS values of
two schemes on our 16-GB emulated SSD with Sfull = 16
KB and Ssub = 4 KB using several I/O workloads generated
from Sysbench [3]. (For a detailed description of our emu-
lated SSD, see Section 5.) As shown in Fig. 2, these work-
loads are different in two ratios, the ratio rsmall of small
writes to total writes and ratio rsynch of synchronous small
writes to total small writes. In each measurement, our emu-
lated SSD was preconditioned to the same SSD steady state
by filling 10-GB data to the SSD before running Sysbench.
Fig. 2(a) shows normalized IOPS values for the CGM and

FGM schemes under different combinations of rsmall and
rsynch. IOPS values were normalized over that of the FGM
scheme when both rsmall and rsynch were set to 0 (which has

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

N
o

rm
a
li
z
e
d

 I
O

P
S

rsmall

FGM

CGM

rsynch(1)
rsynch(0)rsynch(0.3)

rsynch(0.5)

(a) IOPS.

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1N
o

rm
a
li
z
e
d

 G
C

 i
n

v
o

c
a
ti

o
n

s

rsmall

rsynch(0)

rsynch(0.5)

rsynch(0.3)

rsynch(1)

(b) No. of GC invocations in FGM.

Figure 2: Effects of small writes.

the highest IOPS). In both the CGM and FGM schemes, the
IOPS is directly affected by rsmall and rsynch: the smaller
rsmall (and rsynch), the higher IOPS. As shown in Fig. 2(a),
although IOPS values of the CGM scheme and FGM scheme
are proportional to (1 − rsmall), the CGM scheme shows
much worse performance than the FGM scheme because the
IOPS of the CGM scheme is dominated by the number of
expensive RMW operations.1

To understand why IOPS values are affected by rsmall and
rsynch in the manner shown in Fig. 2(a), we measured the
number of GC invocations in each scheme. Fig. 2(b) shows
how the number of GC invocations changes under differ-
ent combinations of rsmall and rsynch in the FGM scheme.2

The values were normalized over that of the FGM scheme
when both rsmall and rsynch were set to 1 (which has the
highest number of GC invocations). The number of GC in-
vocations changes in a similar fashion as the IOPS values
of Fig. 2(a). When small writes are dominant, the GC ef-
ficiency largely depends on the average request WAF value
of a small request. Since the average request WAF value of
a small request is directly proportional to rsmall and rsynch,
we observe that the number of GC invocations increases as
with increasing rsmall and rsynch values. The higher the
number of GC invocations, the higher the number of erase
operations, so the lifetime of a flash storage system is af-
fected in a similar manner shown in Fig. 2(b).

The key insight from our evaluation study in this sec-
tion is that when small writes are dominant, in order to
achieve high performance and long lifetime of a flash stor-
age, it is important to keep the average request WAF value
of a small write small. The obvious solution to lower the
average request WAF value of a small write would be to
support subpage-granularity writes so that internal fragmen-
tation can be avoided. Our proposed ESP scheme, which
achieves the average request WAF value very close to 1 for
a small write, is one of such schemes.

3. ERASE-FREE SUBPAGE PROGRAMMING

3.1 Subpage Programming Support
In order to support subpage programming, a NAND de-

vice should support writes in a subpage unit. Since NAND
flash memory supports bit-level selective operations with the
self boosting program inhibit (SBPI) scheme [4], subpage
programming can be easily implemented without any new
hardware support. Fig. 3 illustrates how the SBPI scheme
supports bit-by-bit selective program operations. When a
page WLk is programmed, its i-th cell within the page is
selectively programmed depending on the value of BLi. If

1Note that in Fig. 2(a), when rsmall = 0, there is a large IOPS
gap between the FGM scheme and CGM scheme. Intuitively, there
should be no IOPS difference because all writes are full-page writes
when rsmall = 0. This IOPS difference is due to misaligned logical
addresses. In the CGM scheme, when a 16-KB write is not aligned to
the 16-KB page boundary, it is split into two small requests, which
require RMW operations.
2The result for the CGM scheme is very similar to Fig. 2(b), so we
omit it in the paper because of a page limit.

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:26:23 UTC from IEEE Xplore. Restrictions apply.

…

…

…
…

…
…

…
…

…
…

…
…

…

…

…
…

Column Decoder

ECC0 ECC1 ECC2 ECC3 ECC4 ECC5 ECC6 ECC7

Data In / Out

Page Buffer (PB)

BL0 BL1 BL2 BL3 BLn-2 BLn-1

0V VCC 0V VCC 0V VCC

0 1 0 1 0 1

R
o

w
 D

e
c
o

d
e

r

C
h

a
rg

e
 P

u
m

p

(Vcc)

(Vpass)

(Vpgm)

(GND)

SSL

WLk+1

WLk

WLk-1

GSL

(Vpass)

(Cell in the inhibited state)

(Cell in the programmed state)

Enough

potential difference

to program

CSL

e

e

Size of ECC is 1KB or 2KB

BL == Bit Line

WL == Word Line

18V

0V

18V

8V

Control

Logic Unit

…
…

Not enough

potential difference

to program

sp 1 sp 2 sp 3 sp 4

Figure 3: Bit-level selective programming support in NAND
flash memory using the SBPI scheme.

BLi is set to 0 (i.e., 0V), the i-th cell is programmed. If BLi

is set to 1 (i.e., Vcc), the i-th cell is not programmed (i.e.,
inhibited). Therefore, when we need to write a subpage sp
only within a full page fp, we set BLi’s for sp to 0 while the
rest of BLi’s of fp to 1. (For example, in Fig. 4(a), the first
subpage is programmed while the second one is inhibited.)
Although subpage programming can be easily supported

in NAND devices, it is rarely used in modern high-capacity
NAND devices because it significantly impairs the reliabil-
ity of NAND devices. When several subpages in the same
page are successively programmed without intervening erase
operations, the reliability of stored data is seriously low-
ered because of cell-to-cell coupling effect from neighboring
cells and program disturbance.3 The pages damaged by sub-
page programming cannot store data properly. For exam-
ple, such pages cannot satisfy the data retention requirement
of commercial-grade flash products (e.g., 1 year at 30◦C in
JEDEC Standard).

3.2 Basic Idea of ESP
Our proposed ESP scheme overcomes the reliability degra-

dation problem of a generic subpage programming scheme
by allowing a subpage write to a full page only when there
is no valid subpage within the full page. This condition for
a subpage write is motivated by our NAND characteriza-
tion study. In our study, we observed that when the same
page is programmed multiple times in a subpage granularity
without erase operations between successive subpage pro-
grams, the bit error rate (BER) of each subpage is signifi-
cantly different depending on whether the subpage was pre-
viously programmed or not. If the subpage was previously
programmed, a subsequent program will destroy its data.
On the other hand, if the subpage was not yet programmed,
it can hold the written data with a reduced retention capa-
bility. By permitting a subpage program only when there
is no valid subpage in a page, the ESP scheme can support
multiple subpage writes in an erase-free fashion.
Fig. 4 illustrates the key idea of the ESP scheme assum-

ing that a full page consists of two subpages, sp1 and sp2.
As shown in Fig. 4(a), when sp1 is programmed, there is no
degradation in the NAND reliability because this is a normal
page program operation. However, when sp2 is subsequently
programmed without an intervening erase, the data in sp1
is so severely corrupted that the number of bit errors in sp1
exceeds the maximum ECC correction capability. (That is,
sp1 loses its data because of the program disturbance and
coupling effect from the subsequent sp2 program.) On the

3Even if cells in a page are inhibited during a program operation,
their Vth distributions are affected from the high Vpgm stress, which
effectively causes the inhibited cells to be softly programmed. This
undesired phenomenon is called a program disturbance.

Subpage 1 program @time t1

Vth

#
 o

f
c
e

lls

#
 o

f
c
e

lls

Normal program

0 1 0 1 0 1 1 1 1 1

… …

… …

P I P I P I I I I I

programmed inhibited

Normal program

Vth

sp1 sp2

(a) Cell Vth distributions after
sp1 subpage programming.

……

Subpage 2 program @time t1+ t

Uncorrectable

Failure

(over ECC limit)

Constrained

Normal program

(within ECC limit)

#
 o

f
c
e

lls

#
 o

f
c
e

lls

1 1 1 1 1 0 1 0 1 0

… …

I I I I I P I P I P

inhibited programmed

Vth Vth

sp1 sp2

(b) Cell Vth distributions after
sp2 subpage programming.

Figure 4: Effect of subpage programming on NAND relia-
bility.

other hand, as shown in Fig. 4(b), although sp2 was pro-
grammed twice as with sp1, sp2 can store data properly after
a subpage write to sp2. Since sp2 was inhibited during the
sp1’s program, the reliability impact of sp1’s program was
rather limited to a degree that reduces the data retention
time of sp2. Although the data retention time of sp2 was
reduced, the data can be stored normally during its reduced
data retention time.

In order for the ESP scheme to work properly, therefore,
there should be no valid subpage within a page before a suc-
cessive subpage write is performed. Fortunately, many small
writes have short retention requirements [5], thus making
the ESP scheme an effective solution to solve the large-page
problem when small writes are dominant.

3.3 Subpage-Aware NAND Retention Model
In order to take advantage of the ESP scheme at the FTL

level, it is important for an FTL to understand the reduced
retention capability of subpage writes. Using 2x nm-node
TLC NAND chips, we constructed a simple NAND reten-
tion model for supporting subpage programming. To make
the NAND retention model, we conducted experiments us-
ing a total of 81,920 pages out of 20 TLC NAND chips. In
our test TLC chips, a page consists of 4 subpages. Since
the retention capability of the subpage to be programmed
depends on how many program operations were performed
before programming the current subpage, we classify sub-
pages depending on the number of previous program oper-
ations to subpages. When a subpage sp was programmed k
times before programming the current subpage, sp is called
an Nk

pp-type subpage. For example, in Fig. 4(b), sp2 is an

N1
pp-type subpage while sp1 is an N0

pp-type subpage.
Fig. 5 shows how the data retention capability of a sub-

page changes under varying number of previous program
operations before the subpage is programmed. As a mea-
surement metric of the retention capability of a subpage, we
used the NAND retention BER4. Following the endurance
requirement of TLC NAND devices, we performed 1K P/E
cycles for our TLC NAND devices before our measurements.
Retention BER values were normalized over the retention
BER of an N0

pp-type subpage right after 1K P/E cycles.
(This retention BER is commonly called as the endurance
BER.) As shown in Fig. 5, the more the subpage experi-
ences previous program operations, the higher the retention
BER of the subpage. For example, the retention BER of an

4The NAND retention BER is based on the number Nret(x, t) of
retention errors after t-year retention time for x pre-cycled NAND
cells [6].

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:26:23 UTC from IEEE Xplore. Restrictions apply.

0.8

1.2

1.6

2

2.4

2.8 (Maximum ECC limit)

Right after 1K P/E cycles

After 1-month retention time

After 2-month retention time

“uncorrectable errors”

N
o

rm
a

li
z
e

d

R

e
te

n
ti

o
n

 B
E

R

Npp
0 Npp

1 Npp
2 Npp

3

41%

max.

min.
avg.

Figure 5: Impact of previous program operations on the
retention capability of subpages.

N3
pp-type subpage is 41% higher than that of an N0

pp-type
subpage right after 1K P/E cycles. Furthermore, it is clear
that the retention BER gets worse as the retention time re-
quirement gets longer. For example, an N3

pp-type subpage
satisfies the 1-month retention time requirement while it fails
to meet the 2-month retention time requirement, resulting
in uncorrectable errors. In order to make a NAND retention
model that can be applied to all subpages, we conservatively
interpreted the measurement results shown in Fig. 5. Our
subpage-aware NAND retention model assumes that each
subpage can hold its data properly for one month only. We
used this model in the following section in implementing an
ESP-aware FTL.

4. SUBFTL: ESP-AWARE FTL
Based on our subpage-aware NAND retention model de-

scribed in Section 3, we have implemented subFTL, a new
ESP-aware FTL. SubFTL is based on a hybrid mapping FTL
with additional modules for supporting erase-free subpage
programming. In this section, we first explain an overall
architecture of subFTL and then give detailed explanations
of how subFTL avoids the internal fragmentation problem
by leveraging the erase-free subpage programming feature.
Note that, in the rest of this paper, we focus on explain-
ing the handling of writes because there are no significant
differences from conventional FTLs in handling reads.
Fig. 6 illustrates an overall organization of subFTL. For

an illustration purpose, we assume that Sfull and Ssub are
16 KB and 4 KB, respectively. SubFTL divides NAND flash
into two regions, the subpage region and full-page region,
which are managed in a different manner. In the subpage
region, writes are handled in the unit of 4 KB. Using the ESP
scheme allows us to write 4-KB subpages multiple times to
the same physical page and helps better utilize NAND space
without internal fragmentation. Since the subpage region
must be managed by the fine-grained mapping unit (i.e.,
4-KB), a relatively large amount of memory is required to
maintain mapping information. The full-page region is man-
aged by using a CGM scheme based on full-page program-
ming. While the full-page region can be supported with a
smaller mapping table, costly RMW operations are unavoid-
able when small writes are stored in the full-page region.
The main design goal of subFTL is to realize fragmentation-

free NAND space management using subpage programming,
but, at the same time, we want to maintain a small mapping
table. For this reason, only 20% of the total flash space is
assigned to the subpage region, and the rest is allocated to
the full-page region. While the size of the subpage region is
limited, subFTL can fully exploit the benefits of the subpage
programming by intelligently placing data in two different
regions in accordance with their update characteristics.

4.1 ESP-Aware Data Placement
Upon receiving write requests from the host, subFTL puts

them into a write buffer to merge several small writes with
consecutive logical block addresses into one sequential write.

Extended Mapping Table

Fine-Grained
Mapping Table

Subpage Management

Retention
Management

Full-page Management

Coarse-Grained
Mapping Table

Garbage
Collector

Wear-
LevelerWrite Buffer

Data Placement

Write-page type (sp, fp) GC invoke WL invoke

NAND Flash Memory

Subpage program Full-page program Read Erase

16 KB

... ...

Subpage Region Full-page Region

Write requests

4 KB

Figure 6: An organizational overview of subFTL.

Before flushing a buffered write to NAND flash, subFTL has
to decide a target flash region to which the flushed data
should be sent. In the current version of subFTL, the length
of a flushed write request is used as a criterion that decides a
target region – if its length is shorter than Sfull, it is sent to
the subpage region; otherwise, it is allocated to the full-page
region. When the size of a flushed write request is larger
than Sfull but it is not multiples of Sfull, the request is split
into two regions. For example, if the size of a flushed write
request was 20 KB, the first 16-KB data is sent to the full-
page region while the rest 4-KB data is sent to the subpage
region. In this way, subFTL always sends small writes to the
subpage region, completely avoiding internal fragmentation.

Although it seems too simple, this data placement strat-
egy is effective in several aspects. First, even though a rel-
atively small portion of space is assigned to the subpage
region (i.e., 20% of the total capacity), it is large enough to
accommodate incoming data because only small writes are
stored on it. Second, according to our experiments with var-
ious traces, small writes are likely to have higher update fre-
quencies than large writes. Similar observations were also re-
ported in previous studies [5]. In subFTL, therefore, hot and
cold pages tend to be isolated within two different regions.
Thanks to a simple but efficient data separation heuristic
between hot data and cold data, subFTL effectively lowers
the GC overhead. Third, frequent updates in the subpage
region create many invalid data, which makes it easier for
us to manage the subpage region that has shorter retention
time (see Section 4.2).

The full-page region is managed in exactly the same way
as the CGM-based FTLs – subFTL employs the same L2P
mapping, garbage collection, and wear-leveling algorithms
as the CGM-based FTL for the full-page region. The sub-
page region, however, must be treated in a different manner
because of its unique subpage programming feature.

4.2 Subpage Region Management
The writing policy of subFTL in the subpage region is

different from that in the full-page region. Fig. 7 depicts
how subFTL writes data to the subpage region. Suppose
that there are two blocks, BX and BY , in the subpage re-
gion, each of which has four 16-KB full pages, i.e., BX =
{pX0 , ..., pX3 } and BY = {pY0 , ..., pY3 }. Each full page is di-
vided into four 4-KB subpages, i.e., pX0 = {spX(0,0), ..., sp

X
(0,3)},

which can be individually programmed. BX is thus a set of
16 subpages, i.e., BX = {spX(0,0), sp

X
(0,1), ..., sp

X
(3,2), sp

X
(3,3)}.

(For a simple illustration, we do not depict channels and
ways in Fig. 7, but subFTL is developed to maximize I/O
parallelism of a multi-channel architecture.)

Suppose that a sequence R of write requests, which are
sent to the subpage region, is expressed as follow: R =
<r0, r1, r2, ...>, where ri is a logical address of a 4-KB sub-

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:26:23 UTC from IEEE Xplore. Restrictions apply.

sp
(0,0)

X

sp
(1,1)

X

sp
(2,2)

X

sp
(3,3)

X

p
0

X

p
1

X

p
2

X

p
3

X

sp
(0,3)

X

sp
(3,0)

X

BX

sp
(0,0)

Y

sp
(1,1)

Y

sp
(2,2)

Y

sp
(3,3)

Y

p
0

Y

p
1

Y

p
2

Y

p
3

Y

sp
(0,3)

Y

sp
(3,0)

Y

BY

(a) The initial status of BX and BY .

1

p
0

X

p
1

X

p
2

X

p
3

X

BX

p
0

Y

p
1

Y

p
2

Y

p
3

Y

BY

2

3

0

1
2

3

7

1

2

R = < 0, 1, 2, 3, 1, 2, 3, 7 >

Invalid

(b) The status after 8 subpage writes.

1

p
0

X

p
1

X

p
2

X

p
3

X

BX

p
0

Y

p
1

Y

p
2

Y

p
3

Y

BY

2

3

0 1

2

3

7

1

7

8

9

0

2

R = < 7, 8, 9 >

(c) The status after 3 more subpage writes.

Figure 7: An illustrative example of the writing policy of subFTL in the subpage region.

page write and ri arrives before rj if i < j. In Fig. 7(b), R =
<0, 1, 2, 3, 1, 2, 3, 7>. SubFTL redirects ri to the subpage re-
gion so that the 0th subpages of blocks are filled up before
other subpages. In Fig. 7(b), four requests, 0, 1, 2, and 3 at
the beginning of the sequence R, are written to the four 0th
pages, spX(0,0), sp

X
(1,0), sp

X
(2,0) and spX(3,0), of BX , respectively

(see 1 in Fig. 7(b)), while four requests, 1, 2, 3, and 7, at the
rest of the sequence R are written to spY(0,0), sp

Y
(1,0), sp

Y
(2,0)

and spY(3,0) of BY , respectively (see 2 in Fig. 7(b)).
Once all of the 0th subpages are used up, subFTL attempts

to send the following requests to the 1st subpages in the
blocks. Unfortunately, writing data to 1st subpages results
in the corruption of data in the corresponding 0th subpages
in the same full page. For example, the content of spX(0,0) is

destroyed after new data is written to spX(0,1). To avoid this,
subFTL tries to select a block with only obsolete subpages
containing invalid data, and then uses it as a target block
where new data can be written. This is a reasonable choice
because if 0th subpages are all obsolete, the data loss of
0th subpages does not affect the data reliability. If subFTL
cannot find a block with no valid subpage, subFTL looks for a
block with the smallest number of valid subpages. Fig. 7(c)
illustrates such a case where subFTL selects BX as a block
with the smallest number of valid subpages. As shown in
Fig. 7(b), since the new versions of 1, 2, and 3 were written
to BY , the old versions of 1, 2, and 3 in BX are no more
valid. However, since 0 in BX is still valid, subFTL moves 0
to the next subpage spX(0,1) (see 1 in Fig. 7(c)). Subsequent

subpage writes, 7, 8, and 9, can be written to spX(1,1), sp
X
(2,1),

and spX(3,1), respectively (see 2 in Fig. 7(c)). In this way,
subFTL keeps writing data to the subpage region without
any data corruption.
It is worth noting that extra I/Os for the movements of

valid subpages to their neighboring ones account for an in-
significant portion of the total I/Os. Thus, their impact
on performance is negligible. As mentioned before, subpage
writes have a high temporal locality, so the majority of them
become obsolete. Moreover, subFTL allocates 20% of the to-
tal space to the subpage region, which facilitates more sub-
pages becoming obsolete before blocks (where they reside)
are being selected as a target.
Once all the free subpages in blocks are exhausted, subFTL

performs garbage collection to reclaim free blocks. SubFTL
selects a victim block with the smallest number of valid sub-
pages, and then decides whether or not to move valid sub-
pages to a free block (which is reserved for garbage collection
before). For subpages that have been updated at least once
(since it was written to the subpage region), subFTL moves
them to the free block because they are likely to be updated
again. On the other hand, subpages that haven’t been up-
dated (since it was written to the subpage region) are evicted
to the full-page region. This causes RMW operations, but
allows us to regularly evict cold subpages to the full-page
region, helping us keep only hot data in the subpage region.
Since hot data is frequently overwritten, blocks in the

subpage region are more rapidly worn out than those in
the full-page region. This unbalanced wearing problem is

solved by using existing wear-leveling algorithms. The type
of blocks (i.e., subpage or full-page blocks) are decided at
the program time, not at the design time. Thus, convert-
ing subpage blocks to full-page ones (or vice versa) can be
done by swapping data between them as commonly done in
conventional wear-leveling.

In order to mitigate memory overhead for fine-grained L2P
mapping, subFTL employs a hash table to manage the sub-
page region. The memory requirement for the hash table is
not huge because each full page can hold only one valid sub-
page – that is, the number of hash entries pointing to valid
subpages is one fourth of the total subpages. Therefore, even
with a relatively small hash table, subFTL can quickly find a
physical location of a given logical subpage, without being
severely affected by hash collisions.

4.3 Retention Management
As discussed in Section 3, the subpage region has a shorter

retention time than the full-page region – if data stay longer
than 1 month, it cannot be retrieved due to uncorrectable
errors. To prevent this, subFTL checks if there are sub-
pages holding data longer than 15 days. If such subpages
are found, subFTL evicts long-lived subpages to the full-page
region. According to our experiments with various traces,
such long-lived subpages account for a trivial portion of the
total subpages, and its impact on performance is negligible.

5. EXPERIMENTAL RESULT
In order to evaluate the effectiveness of the proposed tech-

nique, we implemented subFTL as a host-level FTL using the
open flash development platform [7]. SubFTL supported 512-
GB flash capacity in maximum, but, for fast evaluations, we
limited its storage capacity to 16 GB. This reduction of the
storage capacity did not distort experimental results because
the performance of the FTL was decided by the character-
istics of input workloads, not by the storage capacity. Our
flash device was composed of 8 channels, each of which had
4 TLC NAND chips.

Based on our measurement study with real TLC NAND
chips, a full-page write latency (i.e., 16 KB) was set to 1600
µs, while a subpage write latency was 1300 µs. This is be-
cause, when programming a 4-KB subpage, both the number
of bit lines (BLs) to be precharged in verify-read operations
and the length of word lines (WLs) to be driven to high
Vpgm are reduced. This shortens a RC delay and reduces a
setup time in program operations [8].

The five benchmarks were used for our evaluations: Sys-
bench (system performance testing benchmarks), Varmail
(mail-server workload benchmarks), Postmark (mail-server
workload benchmarks), YCSB (Yahoo! Cloud Serving Bench-
mark running on Cassandra), and TPC-C (one of on-line
transaction processing benchmarks). Each benchmark has
different characteristics, including rsmall and rsynch. We
have compared the performance of subFTL with two conven-
tional FTLs, cgmFTL and fgmFTL, where cgmFTL is based on
the CGM scheme and fgmFTL is based on the FGM scheme.
Fig. 8(a) shows the normalized IOPS of the three FTLs
under the five benchmarks. SubFTL improves IOPS by up
to 249.2% and 74.3% (120.8% and 35.1%, on average) over

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:26:23 UTC from IEEE Xplore. Restrictions apply.

0.0

1.0

2.0

3.0

4.0

fgmFTL

subFTL

cgmFTL

N
o

rm
a
li
z
e
d

 I
O

P
S

(a) Normalized IOPS.

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o

rm
a

li
z
e

d
 G

C
 i
n

v
o

c
a

ti
o

n
s

fgmFTL

subFTL

(b) Normalized GC invocations.

Figure 8: Performance comparisons of three FTLs.

cgmFTL and fgmFTL, respectively. As expected, cgmFTL per-
forms the worst because of a large number of RMW oper-
ations. For example, 89.3% of the total writes in Varmail
were serviced using RMW operations.
To better understand why subFTL outperforms fgmFTL (as

well as cgmFTL), we measured the number of GC invocations,
in fgmFTL and subFTL, respectively, as shown in Fig. 8(b).
The number of GC invocations in subFTL is reduced by up to
177% (95.2%, on average) over fgmFTL. As expected, cgmFTL
and fgmFTL often waste 16-KB full pages to accommodate 4-
KB subpage writes. This underutilization of full-page space
never occurs in subFTL because of subpage writes in subFTL.
By efficiently utilizing NAND space, subFTL greatly reduces
extra I/Os caused by garbage collection as well as the num-
ber of GC invocations, thereby improving overall IOPS of
all the benchmarks.
Fig. 8(a) shows that there exists a significant variation

in the degree of performance improvement in subFTL over
fgmFTL depending on different benchmarks. This variation
largely depends on rsmall and rsynch values of different bench-
marks. In the cases of Sysbench, Varmail, and Postmark,
where synchronous small writes account for a considerable
proportion (more than 95%) of the total writes, the per-
formance improvement by subFTL is significant. For the
other benchmarks, YCSB and TPC-C, relatively smaller per-
formance gains are observed because of a small proportion
(less than 20%) of 4-KB writes. As depicted in Fig. 8(a),
however, subFTL still exhibits 19.3% and 10.3% higher IOPS
than fgmFTL for YCSB and TPC-C, respectively.
We finally evaluate the average request WAF of small

writes in subFTL. As summarized in Table 1, the values of
average request WAF is very close to 1.0, regardless of the
benchmarks. This indicates that subFTL can avoid almost
all internal fragmentation as well as RMW operations. The
average request WAF, however, is not exactly 1.0 subFTL
incurs two types of small extra I/Os, one for migrations of
long-lived subpages within the subpage region and the other
for evictions of cold subpages to the full-page region.

6. RELATED WORK
There have been several studies that attempt to miti-

gate various side effects of small writes in flash storage [9,
10, 11]. However, most existing techniques support quasi-
subpage programming in that they do not allow multiple
subpage programs on the same page in an erase-free fashion
as in subFTL. Jin et al. proposed the sector-log technique
for large-page NAND devices [9]. The sector-log technique
is similar to subFTL in that it is based on a hybrid map-
ping method. It appends small writes to a reserved log area
managed by fine-grained mapping, while storing full-page
writes to an ordinary flash area that is managed by coarse-
grained mapping. However, unlike subFTL, since the sector-
log technique supports subpage programming at the logical
level as with other FGM-based FTLs, its performance suffers
when synchronous small writes occur fairly frequently. Kim
et al. proposed another subpage-based programming tech-
nique for small writes [10]. This technique, unlike subFTL,
uses subpage programming as a means to extend the life-

Table 1: Detailed analysis of subFTL.

Sysbench Varmail Postmark YCSB TPC-C

% of small write 99.7% 95.3% 99.9% 19.3% 11.8%

average request WAF 1.005 1.007 1.003 1.005 1.008

time of NAND flash by avoiding unnecessary write stress to
NAND pages for small writes. Furthermore, this technique
is not a real subpage programming technique because the
partially programmed page should be erased before another
subpage on the same page can be programmed.

The subpage programming technique [11] proposed by
Zhang et al. supports multiple program operations on the
same page without intervening erase operations as in sub-
FTL. However, this technique targets SLC-mode pages only,
thus limiting its applicability to high-capacity NAND de-
vices which are mostly based on MLC/TLC flash memory.

7. CONCLUSIONS
We have presented a new system-level technique that solves

the large-page problem of high-capacity NAND devices. Our
proposed technique is based on the ESP scheme, which en-
ables the same page to be programmed multiple times by
a subpage granularity in an erase-free manner. Since the
ESP scheme can avoid internal fragmentation when small
writes are written to large pages, it significantly reduces
the overhead of garbage collection for flash storage systems
with large-page flash memory. In order to overcome the re-
duced data retention capability of subpages written by the
ESP scheme, we exploit the lifetime characteristics of small
writes which tend to have short retention times. Based on
our novel subpage-aware NAND retention model, we have
implemented an ESP-aware FTL, subFTL, which takes ad-
vantages of ESP-enabled NAND devices. Our experimental
results show that subFTL can improve the IOPS by up to
74% while the number of GC invocations are reduced by
177% over the FGM-based FTL.

The current version of subFTL can be extended in several
directions. For example, although we did not consider sub-
page read operations in the current version of subFTL, we
plan to support subpage read operations in the next version
of subFTL. If subpage read operations can be made faster
than full-page reads, we believe that they can be useful for
read latency-sensitive applications.

REFERENCES
[1] S. Lee et al. A 128Gb 2b/Cell NAND Flash Memory in 14nm

Technology with tPROG=640µs and 800MB/s I/O Rate. In
Proc. IEEE Int. Solid-State Circuits Conf., 2016.

[2] D. Kang et al. 256Gb 3b/Cell V-NAND Flash Memory with 48
Stacked WL Layers. In Proc. IEEE Int. Solid-State Circuits
Conf., 2016.

[3] Sysbench. http://github.com/akopytov/sysbench.
[4] K. Suh et al. A 3.3V 32 Mb NAND Flash Memory with

Incremental Step Pulse Programming Scheme. IEEE Tran. on
Consumer Electronics, 30(11):1149–1156, 1995.

[5] L.-P. Chang et al. Hybrid Solid-State Disks: Combining
Heterogeneous NAND Flash in Large SSDs. In Proc. Design
Automation Conf., 2008.

[6] J. Jeong et al. Dynamic Erase Voltage and Time Scaling for
Extending Lifetime of NAND Flash-based SSDs. IEEE Tran. on
Computers, PP(99), 2016.

[7] S. Lee et al. Application-Managed Flash. In Proc. USENIX
Conf. on File and Storage Technologies, 2016.

[8] http://www.anandtech.com/show/7147/micron-announces-
16nm-128gb-mlc-nand-ssds-in-2014.

[9] S.-W. Jin et al. Sector Log: Fine-Grained Storage Management
for Solid State Drives. In Proc. ACM Symp. on Applied
Computing, 2011.

[10] J.-H. Kim et al. Subpage Programming for Extending the
Lifetime of NAND Flash Memory. In Proc. Design, Automation
and Test in Europe Conf. and Exhib., 2015.

[11] X.-B. Zhang et al. Reducing Solid-State Storage Device Write
Stress through Opportunistic In-place Delta Compression. In
Proc. USENIX Conf. on File and Storage Technologies, 2016.

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:26:23 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

