
Improving I/O Performance of Large-Page Flash
Storage Systems Using Subpage-Parallel Reads

Jisung Park1, Myungsuk Kim1, Sungjin Lee2, and Jihong Kim1

1Department of Computer Science and Engineering, Seoul National University
2Department of Information and Communication Engineering, DGIST

Email: 1{jspark, morssola75, jihong}@davinci.snu.ac.kr, 2sungjin.lee@dgist.ac.kr

Abstract—Handling small read requests is important on large-
page flash storage systems because small reads tend to waste
the read bandwidth. We present a system level solution that
avoids wasting the read bandwidth based on a new page read
operation, called the subpage-parallel read (SPREAD). SPREAD
achieves an optimal latency for a small read request by reading
requested subpages only. By improving the read performance
of applications as well as garbage collection, SPREAD improves
the overall I/O performance. Experimental results show that an
SPREAD-aware FTL can improve the IOPS and read latency by
up to 122% and 56%, respectively.

I. INTRODUCTION

In recent years, the capacity of a NAND flash chip has

steadily increased by about 30% per year [1] [2]. Although

this dramatic improvement in the capacity per flash chip

helped flash-based storage systems to be widely adopted

from mobile systems to enterprise servers, these high-capacity

NAND chips have also introduced several technical difficulties

at the storage system level because of their capacity-oriented

design decisions such as a large block size and a large page

size. For example, while the capacity of a NAND chip was

increased from 16 Gb to 128 Gb, the NAND page size was

increased by 8 times as well from 2 KB to 16 KB [1] [2].

In this paper, we investigate the large-page problem of high-

density NAND devices from a read operation’s perspective.

In order to maximally increase the capacity of a NAND

chip, a large NAND page is an (somewhat) inevitable design

choice. If a NAND page were small, more peripheral circuits

would be needed to access a larger number of small pages,

thus sacrificing a valuable die area for the peripheral circuits.

Furthermore, a large NAND page is helpful in improving the

I/O bandwidth because it allows more cells to be read/written

at the same time.

Although it is a reasonable design decision to use a large

page at the flash chip level, a large page size can degrade

the performance of a flash storage system. When a read

needs to access small data, if the NAND page is much larger

than the requested data, a large portion of the NAND page,

which was not requested by the read, is unnecessarily read,

thus increasing the read amplification factor (RAF) of the

read. (In this paper, we call such a read amplified). Since

a page is the minimum unit of read operations in NAND

flash memory, many amplified reads occur on large-page flash

storage systems, when small read requests are dominant. For

example, even when a file system needs to read only 4-KB

data from a NAND device with 16-KB pages, the full 16-KB

page should be read, wasting the read bandwidth in reading

the unwanted 12-KB data. When a workload is dominated

by small random reads (e.g., workloads in key-value stores

[3] and graph processing applications [4]), the effective read

bandwidth of the flash storage system can be degraded to just

25% of the maximum read bandwidth.
In addition to amplified reads caused from small read

requests of applications or operating systems, a large-page

flash storage system can generate many amplified reads inter-

nally as well because of its common mapping scheme. When

the storage system employs a fine-grained mapping (FGM)1

scheme, multiple (small) logical pages can be mapped to a

single (large) physical page. When these logical pages are

updated, many physical pages contain both valid and invalid

logical pages within the same physical page, thus resulting in

many amplified reads for accessing these fragmented physical

pages. For example, in our experiments, the read bandwidth

during garbage collection barely reached about half of the

maximum value under a workload with many small writes.
In this paper, we present a novel system-level technique

that solves the amplified read problem of large-page SSDs.

Our approach is based on an observation that the root cause

of the amplified read problem is that reading a part of a NAND

page is not size-proportional 2. In order to improve the size

proportionality of read operations, we aggressively exploited

another observation at the device level: the latency of a small

read can be significantly reduced by 1) sensing only necessary

NAND cells and 2) transferring only demanded data. Based

on our observations, at the device level, we devise a new

page read operation called a subpage-parallel read (SPREAD).

SPREAD can read multiple subpages at the same time while

skipping unneeded subpages so as to enable us to reduce the

read latency as well as read amplification factor. For a number

of possible combinations of valid subpages within a given

NAND page, SPREAD can decide whether to read a subpage or

not at the subpage granularity, thus making it size-proportional
even when reading multiple (not contiguous) subpages.

Based on the proposed SPREAD operation, we have devel-

oped an SPREAD-aware flash translation layer (FTL), called

1The FGM scheme is commonly used to avoid expensive read-modify-write
operations for small writes on large-page flash storages [5]. For more details,
see Section II.

2We define that a read is size-proportional if the read latency is proportional
to the size of the requested data.

25

2018 7th IEEE Non-Volatile Memory Systems and Applications Symposium

2575-257X/18/$31.00 ©2018 IEEE
DOI 10.1109/NVMSA.2018.00017

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:23:58 UTC from IEEE Xplore. Restrictions apply.

spFTL. When a read is requested, spFTL decides which

subpages to be read in parallel, and issues the optimal number

of SPREAD operations to underlying NAND devices. SpFTL
aggressively exploits SPREAD when internal page migrations

are needed by SSD management tasks (e.g., garbage col-

lection) so that no read bandwidth is wasted by amplified

reads during page migrations. Our experimental results using

various benchmark tools and real-world traces show that

spFTL improves the read bandwidth and latency by up to

122% and 56%, respectively. By effectively exploiting the size

proportionality of SPREAD, spFTL can also reduce garbage

collection (GC) overheads by up to 13%, thus improving the

overall I/O performance of flash storage systems even under

write dominant workloads.

The rest of the paper is organized as follows. In Section II,

we present a key motivation behind SPREAD by explaining

how amplified reads affect the I/O performance. Section III

describes the proposed SPREAD with its implementation de-

tails. In Section IV, we present the proposed SPREAD-aware

FTL, spFTL. Experimental results follow in Section V, and

Section VI concludes with a summary and future work.

II. MOTIVATION

It is well known that the latency of page read tends to

increase as the NAND page size becomes larger [6]. However,

it does not mean that NAND devices with larger pages provide

inferior performance all the time than ones with smaller pages.

In fact, with large-page NAND, it is expected to get higher

performance with an improved read bandwidth. For example,

reading four separate 4-KB pages from the NAND device

requires about 180 μs, but the same amount of data can be

read from a 16-KB page in about 120 μs [1] [2]. However,

our observation shows that many real-world applications fail to

enjoy such high throughput of large-page NAND; instead, they

seriously suffer from the degraded bandwidth due to the read
amplification. We have found that this problem stems from

frequent amplified reads which read the whole page (e.g., 16

KB), but actually use only part of it (e.g., 4 KB).

In order to figure out what mainly causes amplified reads,

we have analyzed two popular applications in high perfor-

mance computing (HPC) systems, a key-value store [3] and

a graph processing application [4]. We first realized that the

HPC applications themselves generate lots of small random

reads to storage devices. Figure 1 shows distributions of read

data sizes of the two applications. As shown in Figure 1,

most values (over 90%) in the key-value store are smaller

than 1 KB, and more than 99% of adjacency lists in the graph

processing application are smaller than 4 KB. Moreover, since

both the applications exhibit very low spatial locality [3] [4],

performance improvements from page-cache or storage-buffer

hits are marginal.

Data fragmentation is another root cause that creates am-

plified reads. Modern SSDs typically employ a fine-grained

mapping (FGM) scheme that maps 4-KB logical pages to a

Fig. 1: Distributions of read data sizes.

larger physical page, say 16-KB3. The FGM scheme buffers

four 4-KB logical pages and writes them to a 16-KB NAND

page together. By doing this, FGM allows us to avoid ex-

pensive read-modify-write (RMW) operations in case where

a small random update comes [5]. For example, suppose that

one 4-KB logical page out of the four in the same physical

page is updated. If the mapping unit were 16 KB (which is

equivalent to a NAND page size), the FTL has to load the

entire 16-KB NAND page to an internal buffer (read), update

the buffered page with new 4-KB data (modify), and write

it back to another NAND page (write). On the other hand,

under the FGM scheme, up-to-date 4-KB data can be sent to

a new physical page, and its old version is just marked invalid.

While it is effective in avoiding RMW operations, the FGM

scheme results in serious data fragmentation inside physical

pages. Suppose that application wants to read those four 4-

KB pages again. In this case, the FGM scheme has to read

two 16-KB NAND pages: one to get three logical pages and

the other one to get the recently updated one. As a result, 32-

KB data have to be read from the NAND device to deliver

requested 16-KB data to the host.

In order to understand the impact of amplified reads on

I/O performance, we carried out preliminary experiments on a

16-GB DRAM-emulated SSD with 16-KB NAND pages. We

used FIO benchmark tool [7] to generate similar distributions

of read data sizes as in Figure 1. Figure 2(a) compares the read

bandwidths of four different workloads, KV1, KV2, GR1, and

SU. KV1 and KV2 mimic I/O distributions of the key-value

stores, while GR1 generates similar I/O patterns as the graph

processing application. SU (sequential update) is designed to

assess the impact of fragmentation: it first sequentially writes

16 GB of data, and randomly writes 4-GB data with 4-KB

I/Os, and finally issues 16-KB reads to the SSD. Ideal shows

the ideal read bandwidth that NAND devices would achieve

when there is no amplified read. As shown in Figure 2(a), the

read bandwidths under all the workloads are far lower than the

ideal bandwidth. It is worth noting that the read bandwidth

of SU decreases by 36% over Ideal, even though there are

only 16-KB reads. It indirectly shows that data fragmentation

greatly lowers the overall read throughput. Figure 2(b) shows

the RAF of the workloads which indicate the ratio of the

data actually read from NAND devices to the data requested

from the application. It clearly shows that amplified reads

significantly increase the RAF, wasting the raw bandwidth of

3The logical page size is typically set to 4 KB, to be equal to the default
block size of many modern file systems such as Linux ext4 and FAT32.

26

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:23:58 UTC from IEEE Xplore. Restrictions apply.

(a) Normalized read bandwidth. (b) Read amplification factor.

Fig. 2: Impact of amplified reads on I/O performance.

large-page NAND devices to read unwanted data.

The key insight from our preliminary experiments is that,

in order to achieve the high performance of large-page NAND

flash, a new NAND device-level read scheme is required which

enables us to selectively read data actually needed from NAND

devices. One might think that higher-level approaches would

be more feasible because these do not require us to modify

underlying devices. For example, increasing a data block size

of a file system might be able to remove the read amplification

problem. However, this could not be an ultimate solution.

As mentioned above, small random reads are dominant in

many applications. Thus, regardless of a file-system block

size (which is a data allocation unit), there will be many

small reads since the smallest I/O unit size is still 512 B

or 4 KB. Some might suggest to increase the minimum I/O

unit size to 16 KB or more. Since applications always issue

read requests larger than 16 KB to SSDs, it would eliminate

amplified reads at the device level. However, because of the

internal fragmentation at the file system level, most of data

read from the SSD are unnecessary and are not used. That

is, it just moves the amplified read problem to the file-system

level, instead of getting rid of its root problem.

III. SUBPAGE-PARALLEL READ

A. Design Requirements

Based on insights from Section II, we propose a new type

of a NAND device that supports selective subpage reads from

a NAND page, called SPREAD. An SPREAD-enabled NAND

device exposes a reconfigurable subpage read interface that

allows us to read one or more subpages in parallel from

a large-size NAND page. By sensing a limited number of

cells and transferring fewer bit values to the flash controller,

SPREAD shortens both the read (sensing) time tR at the device

and the time tDMA for transferring data to the flash controller,

thus significantly increasing the size proportionality of small

reads.

In order to realize the idea of SPREAD, we should answer

the following two questions: 1) how to decide the size of a

subpage which is the minimum unit of reading data, and 2)

how to support parallel reads for multiple subpages scattered

within a single large page. The answer to the first question

is straightforward. The minimum unit of a subpage read must

be aligned with the length of an error correction code (ECC)

(a) Contiguous subpages. (b) Fragmented subpages.

Fig. 3: Examples of parallel subpage read patterns.

code word. In NAND flash memory, since all written data

are encoded by an ECC function, we need to read an entire

ECC code word for obtaining original data previously written.

While it is different depending on NAND designs, recent

NAND devices employ a 2-KB ECC code word [8] , which is

small enough to minimize the read amplification by amplified

reads4.

The second question is a little more complicated, because

we have to take into account various patterns of demanded

subpages falling into a single large-size page. Figure 3 depicts

example cases of when multiple subpage reads happen on a

single page simultaneously. In Figure 3, we assume that the

size of a page is 16 KB and an ECC code word is 2 KB (Unless

otherwise stated, we keep using this NAND configuration).

To meet the ECC requirement, we logically divide a 16-KB

NAND page to multiple 2-KB subpages (SPs). Figure 3(a)

illustrates cases where small read requests come from the

host, but they result in contiguous subpages in the NAND

page. These cases can be easily handled: for subpage reads,

NAND devices just need the information about the offset of the

start subpage, along with the read size. However, the problem

gets more complicated when subpages are severely fragmented

over the NAND page as shown in Figure 3(b). In these cases,

providing the offset and the length of desired data is not

sufficient to support SPREAD.

The naive solutions for supporting those various subpage

combinations may be 1) adding dedicated read commands

for individual cases or 2) supporting only simple and limited

combinations (e.g., only continuous SPs). The former option

is not feasible because too many new NAND commands

should be added to NAND chips to cope with all the possible

combinations of subpage reads. In theory, when a NAND page

has n ECC code words, 2n−1 combinations are possible. The

latter one would reduce the design complexity of SPREAD, but

it may lose a lot of optimization opportunities.

B. Implementation of SPREAD Command

We address all the problems mentioned above with a simple

yet effective co-design of NAND devices and flash controllers.

Our key idea is to allow underlying flash controllers and

NAND devices to be aware of each subpage’s necessity, by

4The size of an ECC code word directly affects the error correction
capability. In general, the longer code words, the stronger capability. The 2-
KB LDPC is widely adopted in recent NAND flash memory for compensating
the degraded NAND reliability.

27

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:23:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: An operational overview of SPREAD.

providing them a valid bitmap. The valid bitmap indicates the

information of all the demanded subpages within a NAND

page. Figure 4 illustrates how the proposed SPREAD command

works with 16-KB NAND pages and 2-KB ECC words. As

shown in Figure 4, the 8-bit valid bitmap for a page read is

delivered to the target flash controller and NAND device via an

extended NAND read command with an additional command

slot for the valid bitmap. All the possible combinations of

subpage reads, therefore, can be specified in a unified single

NAND read command. Note that a full page read can be

performed by using the same command with a valid bitmap

of 0xFF.

With the new NAND read command, SPREAD effectively

reduces tR and tDMA. SPREAD shortens tR by selectively

reading only necessary subpages within the target page. When

an SPread command arrives, the given valid bitmap is tem-

porarily kept in a dedicated register, called a VB register.

Referring to the VB register, the SPREAD-enabled NAND

device selectively pre-charges the desired bit lines (BLs), while

the others are inhibited. The additional selective pre-charging

logic, an SP selector in Figure 4, does this task by simply

pulling down the BLs of inhibited subpages. For SPREAD,

the elapsed times for pre-charging (tPRE) and discharging

(tDISCH) BLs are not fixed, but vary depending on the number

of BLs we want to sense. To deal with such variable elapsed

times, it is required to add extra logics, denoted by Adaptive
Pre-charge/Discharge Controller in Figure 4. Depending on

the requested subpage configuration, it chooses appropriate

tPRE and tDISCH which are sufficient for sensing all the

desired BLs among the pre-defined values. This selective

sensing makes tR vary depending on the number of BLs since

tR is mostly decided by tPRE and tDISCH . That is, as the

less BLs are being sensed, the shorter tR is. This adaptive

control of tPRE and tDISCH is the key to make SPREAD

size-proportional.
SPREAD transfers only the sensed bit values to the stor-

age firmware, which results in the reduction of tDMA. The

SPREAD-enabled NAND device maintains the valid bitmap

inside, so it is able to specify the column offsets for fetching

the required bytes from the page buffer, skipping unwanted

subpages. This is accomplished by adding a simple FSM logic

to the NAND device which dynamically generates column

addresses. To selectively send the required bytes to the flash

TABLE I: Estimated SPREAD latencies over difference sizes.

size [KB] 2 4 6 8 10 12 14 16

tDMA [μs] 2.5 5 7.5 10 12.5 15 17.5 20

tR [μs] 35 45 55 65 75 85 95 99

tSPR [μs] 37.5 50 62.5 75 87.5 100 112.5 119

controller via DMA, it is inevitable to modify the DMA master

engine (Dynamic Address Controller in Figure 4) in the flash

controller. This modification, however, is actually simple; the

DMA engine just needs to toggle RE signals for only bytes it

wants, and the NAND device sends sensed bytes to the flash

controller in sync with RE signals.

Although there exists a similar approach to perform such a

dynamic DMA without the proposed SPREAD, it can rather

increase tDMA due to additional overheads. For example, an

existing random data out (RDO) NAND command [9] allows

us to manually modify the column offset of NAND devices.

However, without a modification of underlying hardware, the

storage firmware (i.e., FTL) is responsible for performing the

dynamic DMA, and it should issue one or multiple RDO

commands by itself to the target flash controller and NAND

device. Such an approach can introduce additional overheads

for handshaking and context switching.

To evaluate the benefit from SPREAD, we have estimated the

SPREAD latency tSPR(n) for n-KB reads, which is the sum

of tR(n) and tDMA(n). It is obvious that tDMA(n) is linearly

proportional to the size n, since the sensed data are transferred

by one byte per RE toggle. We can also expect that tR(n),
which largely depends on tPRE(n) and tDISCH(n), must be

shorter with a smaller n, since fewer BLs are pre-charged and

discharged.5 Although it is ideal to develop a new SPREAD-

enabled device to get the exact value of tR(n), because of

practical limitations in academia, we have estimated the tR(n)
based on NAND device physics [11] [10] using known NAND

device parameter values [1]. Table I summarizes the estimated

tSPR(n) for reading n-KB data.

IV. SPFTL: SPREAD-AWARE FTL

We have developed an SPREAD-aware FTL, spFTL, which

leverages the proposed SPREAD command. Figure 5 depicts

an overall organization of spFTL, which is based on an page-

level FTL with the FGM scheme. The main addition in spFTL
over other FGM-based FTLs is the SPREAD Mode Selector

(SMS) module. The SMS module is responsible for deciding

a proper SPREAD mode for the SPREAD command before the

SPREAD command is sent to a NAND device.

Figure 5 illustrates how the SMS module constructs appro-

priate SPREADS for a host read request. In this example, we

assume that a logical mapping size is 4 KB while the NAND

page size is 16 KB. As shown in Figure 5, logically contiguous

pages may map to multiple physical pages under the FGM

scheme; four subpages whose logical addresses are F0h, F1h,

5tPRES(n) is hardly depends on the size n since BLs are pre-charged
in parallel. However, tDISCH(n) is linearly proportional to n, since all the
BLs are discharged though a single common source line (CSL) [10].

28

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:23:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: An organizational overview of spFTL.

F2h and F3h were written together, but two of them F1h and

F2h were overwritten with new data at different times later.

Based on the logical address range of the host read request, the

SMS module looks up the L2P mappings and figures out which

subpages can be read in parallel by a single SPREAD. Once

the subpages are decided, the SMS module sends an SPREAD

command with a proper valid bitmap to a flash controller. In

the above example, spFTL uses three SPREADS to read the

16-KB logical address range requested by host: one for F0h
and F3h, one for F1h, and one for F2h. (Note that when

SPREAD is not used, three full page reads, that is, 3×16-KB

reads, are required.)

SpFTL exploits the SPREAD to reduce internal data copy

overheads for garbage collection and wear-leveling. Once the

garbage collector and wear-leveler are invoked, it is required

to read physical NAND pages for copying valid data to other

locations. In many cases, physical pages to read are severely

fragmented with valid and invalid ones as shown in Figure 5.

When the garbage collector or wear-leveler issues internal

reads for a target block (e.g., Block#56 in Figure 5), the

SMS module decides an optimal SPread mode for each page

with the block’s valid page bitmap (VPB) which indicates the

status of all the physical pages in the block. By selectively

reading only valid subpages with SPREAD, spFTL can avoid

expensive amplified reads, thereby improving the garbage

collection and wear-leveling performance.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

To evaluate the effectiveness of the proposed SPREAD,

we have implemented spFTL as a host-level FTL using an

open flash development platform [12]. Our evaluation platform

supports 512-GB capacity in maximum, but we limited its

capacity to 16 GB for fast evaluations. The target SSD was

composed of 4 channels, each of which had 2 NAND chips.

Each chip was comprised of 512 NAND blocks with 256 16-

KB NAND pages. Based on the same NAND specification

used in our estimation [1], full-page write latency (tPROG)

and block erasure latency (tBER) were set to 660 μs and 3.5

ms, respectively. The estimated values in Table I were used

for modeling a 16-KB page read latency (99 μs) and SPREAD

latency with the other sizes.

TABLE II: I/O characteristics of five benchmark workloads.

workload read:write dominant request size

KV read only 2-KB reads over 90%

GRP read only 4-KB:8-KB = 3:2

PRJ 9:1 4-KB and 16-KB reads similarly mixed

USR 7:3 16-KB reads and 4-KB writes

STG 3:7 16-KB reads and 4-KB writes

The five distinct I/O workloads were used for our evaluation.

Table II summaries the characteristics of the workloads in

terms of a read request size and a read/write ratio. For

evaluating how spFTL better handles small reads of HPC

applications, we collected traces from two read-only work-

loads, KV (key-value stores) and GRP (graph processing

applications), from db bench [13] and LinkBench [14], re-

spectively. To evaluate the performance impact of SPREAD in

more general applications, we used three traces from MSR-

Cambridge traces [15]. In USR and STG, reads and writes

were issued in a mixed manner but, in PRJ, reads were

dominant.

We compared our spFTL with two different FTLs,

pageFTL and dmaFTL. PageFTL is a baseline page-level

mapping FTL with the FGM scheme. DmaFTL only used

the dynamic DMA to reduce tDMA for small reads, but tR
remained the same as in pageFTL since it had to read the

entire 16-KB page from NAND chips. SpFTL can shorten

tDMA and tR, as explained in Section III-B.

B. Evaluation Results

In order to compare the performance gains of spFTL over

the other FTLs, we measured IOPS values and read latencies

for each FTL. As shown in Figure 6(a), spFTL improved

IOPS by up to 2.2x and up to 1.9x over pageFTL and

dmaFTL, respectively. As expected, this benefit mostly came

from the reduction of unnecessary data reads and data transfers

for small reads. As shown in Figure 6(b), spFTL reduced

the average read latency up to 56% and 50% over pageFTL
and dmaFTL, respectively. DmaFTL also exhibited higher I/O

performance than that of pageFTL, but the improvements

gains were far limited (at most 18%) over spFTL. This

was because, with the high speed 0.8 Gb/s I/O bus, tDMA

accounted for an insignificant proportion of the total read

latency.

One notable observation in our experiments was that spFTL
could improve the overall I/O performance even under a

workload with many writes. It was an unexpected benefit since

spFTL was not optimized for improving write performance

at all. Assuming that a read/write ratio of a workload is 7:3,

the maximum performance gain could not be higher than 27%

because the write latency was about 6.6x longer than the read

latency. However, as shown in Figure 6(a), spFTL achieved

performance gains over pageFTL by 44% and 10% under

USR and STG, respectively, despite their write ratios. As

will be explained below, this was due to the negative effect of

internal fragmentation.

29

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:23:58 UTC from IEEE Xplore. Restrictions apply.

(a) Normalized IOPS. (b) Read response time. (c) Read amplification factor.

Fig. 6: Performance comparisons of different FTLs under five workloads.

To better understand how spFTL outperformed the other

FTLs in detail, we measured RAF values in spFTL and

pageFTL as shown in Figure 6(c). The RAF values of spFTL
in small read dominant workloads (KV, GRP, and PRJ) were

very closed to 1. This told us that the minimum unit size of the

SPREAD operation (i.e., 2 KB) was small enough to eliminate

read amplification for small reads. Our results showed that,

even under 16-KB reads dominant workloads (USR and

STG), the RAF values of pageFTL were significantly higher

(more than that in PRJ) than those in spFTL. This was

because small writes under the FGM scheme created serious

internal fragmentation within NAND pages, which greatly

increased the number of amplified reads.

Next, we investigated the impact of SPREAD on reducing

GC overheads. For USR and STG, we measured the average

elapsed time per GC. Some might expect that, since page

writes take much longer than page reads, the GC execution

time would be dominated by writing valid data, and thus,

the benefit of using SPREAD would be trivial. However, our

experimental results revealed that, in USR and STG, spFTL
reduced the GC execution times over pageFTL by 13% and

by 7% on average, respectively. This is because NAND pages

were highly fragmented due to many small writes, so most

of them held valid and invalid logical pages within the same

physcial page. Therefore, in pageFTL, the number of logical

pages moved (or written) to free locations can be decreased,

while the number of (amplified) page reads remains the same.

Consequently, overheads caused by amplified reads accounted

for a nontrivial proportion of the total GC I/Os.

VI. CONCLUSIONS

We have presented a new system-level solution that sig-

nificantly mitigates the amplified read problem on large-page

NAND devices. In order to improve the size proportionality

of small reads, we proposed a new NAND read operation,

SPREAD, which allows selected multiple subpages to be read

in parallel. By slightly extending the existing data path and

control of the NAND read operation, SPREAD supports most

reads without read amplification. In order to take advantages of

SPREAD-enabled NAND devices at the storage level, we have

developed an SPREAD-aware FTL, spFTL. Our experiment

results show that spFTL can increase the IOPS and read

latency by up to 122% and 56%, respectively.

Our work in this paper can be extended in several directions.

For example, in this paper, we have not considered the large-

page problem from a write operation’s perspective. It will be

an interesting extension to combine the existing subpage write

scheme (e.g., [5] [16]) with our SPREAD-based technique.

ACKNOWLEDGEMENTS

This work was supported by Samsung Research Funding

& Incubation Center of Samsung Electronics under Project

Number SRFC-IT1701-11.

REFERENCES

[1] D. Kang et al., “256gb 3b/cell v-nand flash memory with 48 stacked
wl layers,” in Proceedings of IEEE International Solid-State Circuits
Conference (ISSCC), 2016.

[2] A. L. Shimpi. (2014) Micron announces 16nm 128gb mlc nand, ssds
in 2014. [Online]. Available: https://www.anandtech.com/show/7147/
micron-announces-16nm-128gb-mlc-nand-ssds-in-2014

[3] B. Atikoglu et al., “Workload analysis of a large-scale key-value store,”
in ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 1,
2012, pp. 55–64.

[4] H. Liu and H. H. Huang, “Graphene: Fine-grained io management for
graph computing,” in Proceedings of USENIX Conference on File and
Storage Technologies (FAST), 2017.

[5] M. Kim et al., “Improving performance and lifetime of large-page
nand storages using erase-free subpage programming,” in Proceedings
of Design Automation Conference (DAC), 2017.

[6] L. M. Grupp et al., “The bleak future of nand flash memory,” in
Proceedings of USENIX Conference on File and Storage Technologies
(FAST), 2012.

[7] J. Axboe, “Fio-flexible i/o tester synthetic benchmark,” 2005. [Online].
Available: https://github.com/axboe/fio

[8] K. Zhao et al., “Ldpc-in-ssd: Making advanced error correction codes
work effectively in solid state drives,” in Proceedings of USENIX
Conference on File and Storage Technologies (FAST), 2013.

[9] JEDS230, “Nand flash interface interoperability,” JEDEC Solid State
Technology Association, Tech. Rep., 2014.

[10] R. Micheloni et al., Inside NAND Flash Memories. Springer, 2010.
[11] J. E. Brewer et al., Nonvolatile Memory Technologies with Emphasis on

Flash. IEEE Press, 2008.
[12] S. Lee et al., “Application-managed flash,” in Proceedings of USENIX

Conference on File and Storage Technologies (FAST), 2016.
[13] Facebook. (2013) Rocksdb git repository. [Online]. Available: https:

//github.com/facebook/rocksdb
[14] T. G. Armstrong et al., “Linkbench: a database benchmark based on the

facebook social graph,” in Proceedings of ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2016.

[15] D. Narayanan et al., “Write off-loading: Practical power management
for enterprise storage,” in Proceedings of USENIX Conference on File
and Storage Technologies (FAST), 2008.

[16] X. Zhang et al., “Reducing solid-state storage device write stress through
opportunistic in-place delta compression,” in Proceedings of USENIX
Conference on File and Storage Technologies (FAST), 2017.

30

Authorized licensed use limited to: POSTECH Library. Downloaded on March 24,2023 at 06:23:58 UTC from IEEE Xplore. Restrictions apply.

