
SEMS: Scalable Embedding Memory System
for Accelerating Embedding-Based DNNs

Sejin Kim , Jungwoo Kim , Yongjoo Jang ,
Jaeha Kung , and Sungjin Lee

Abstract—Embedding layers, which are widely used in various deep learning (DL)

applications, are very large in size and are increasing. We propose scalable

embedding memory system (SEMS) to deal with the inference of DL applications

with a large embedding layer. SEMS is built using scalable embedding memory

(SEM) modules, which include FPGA for acceleration. In SEMS, PCIe bus, which

is scalable and versatile, is used to expand the system memory and processing in

SEMs reduces the amount of data transferred from SEMs to host, improving the

effective bandwidth of PCIe. In order to achieve better performance, we apply

various optimization techniques at different levels. We develop SEMlib, a Python

library to provide convenience in using SEMS. We implement a proof-of-concept

prototype of SEMS and using SEMS yields DLRM execution time that is 32:85�
faster than that of a CPU-based system when there is a lack of DRAM to hold the

entire embedding layer.

Index Terms—DNN accelerators, embeddings, recommender systems, system

for machine learning

Ç

1 INTRODUCTION

Embedding layers are widely employed in various deep learning
(DL) applications, such as recommender systems (RSes), language
modeling, and machine translation. These applications use large
embedding layers for accuracy, occupying hundreds of GBs of
memory [1]. The size of the embedding layers increases faster than
the density of DRAM, which pushes us to populate more DRAM
modules in the system. Unfortunately, owing to the limited num-
ber of DIMM slots, it becomes difficult to run DL applications
requiring huge embedding layers.

In this paper, we propose a scalable embedding memory sys-
tem, called SEMS, which expands the system memory for embed-
ding layers in a cost-effective yet high performance manner. SEMS
uses a commodity PCIe interconnect to expand the system mem-
ory. It is composed of multiple scalable embedding memory (SEM)
modules, each of which employs a large DRAM (e.g., 64GB–
256GB) and is attached to PCIe Gen3�16. The PCIe bus has a scal-
able design and allows a large number of devices to be connected
to the CPUs. Through PCIe switches that expand the number of
endpoints, we can attach a theoretically unlimited number of
SEMs, creating a huge memory pool.

SEMS is scalable in terms of capacity, but the limited bandwidth
of the PCIe may act as a bottleneck, slowing down the applications.
We address this issue by processing data using the FPGAs inside
SEMs. SEMs keep the entire embedding layer in their internal
DRAM and then perform reduce operations which are relatively
simple to be accelerated by FPGAs. By sending only the reduced
results to the host, SEMS improves the effective bandwidth of PCIe

by several thousand times. To efficiently perform the reduce opera-
tions we also optimize SEMS’s FPGA accelerators using various
techniques.

SEMS is designed to embrace embedding layers that are too
large to fit in a single SEM. It partitions the embedding layer into
pieces and assigns them over multiple SEM modules. Each piece
has no computational dependency with other pieces. This enables
us to evenly distribute pieces in a manner that balances computa-
tional load and memory utilization across SEM modules. More-
over, since no sychronization among SEM modules is necessary,
SEMS provides performance improvement scalable to the number
of SEMs. We implement a Python library, called SEMlib, which vir-
tualizes the embedding layer and the associated operations
through well-defined APIs. This lets developers to easily integrate
SEMS with DL applications.

We implement a proof-of-concept prototype of SEMS. SEM is
built using a commercially available FPGA+DRAM module,
Xilinx’s Alveo U200 with 64 GB DRAM and an UltraScale+
FPGA [2]. U200 belongs to a high-end product family, but there are
cheaper alternatives (e.g., BittWare’s 250-M2D [3]). As the bench-
mark, we use Facebook’s deep learning recommendation model
(DLRM) [4]. SEMS shows 1.36� longer execution time compared to
a typical CPU-based system with enough memory to accommodate
the entire embedding layer. However, for models with a huge
embedding layer which exceeds the size of the system memory,
SEMS shows 32.85� higher performance.

2 DEEP LEARNING-BASED RECOMMENDER SYSTEMS

Recommender Systems (RSes) recommend items to users by pro-
ducing a click-through-rate for given inputs. Nowadays, DL-based
RSes based on embeddings are widely deployed in various
domains such as advertisements and content recommendations
because of its high accuracy and memory efficiency.

The overall structure of typical DL-based RSes is shown in
Fig. 1. The model consists of four main components: (i) a bottom
MLP, (ii) an embedding layer, (iii) feature interaction, and (iv) a top
MLP. The bottom MLP takes in dense features and produces a vec-
tor. The embedding layer takes in sparse features and outputs a
vector per sparse feature. The outputs of the bottom MLP and the
embedding layer, which are vectors of equal lengths, are the input
of feature interaction. When the feature interaction operation is
sum, a vector is fed into the top MLP. Finally, the top MLP produ-
ces a click-through rate.

Embedding Layer. Fig. 1 (right) illustrates an embedding layer
that receives Nspa sparse features as its input. The embedding layer
consists of Nspa embedding tables and each table Ti is used to pro-
cess input sparse feature i. Each column of the embedding table is
an embedding of an item of the corresponding sparse feature. The
size of the embedding is called an embedding dimension (D).

The size of an embedding layer depends on (i) the number of
embeddings in the embedding layer and (ii) D. For high accuracy,
embedding layers tend to employ more tables [5]. In proportion to
the increase in the number of items, the number of embeddings in
each table increases. A high D is also preferred for high accuracy.
As a result, embedding layers get larger, reaching hundreds of GBs
in size [1].

Two operations are involved in an embedding layer:�1 embed-
ding lookup and�2 aggregation. They are executed for each sparse
feature. During embedding lookup (�1 in Fig. 1), the embedding(s)
at the index indicated by the sparse feature is retrieved from the
table. When each sparse feature requires Nlookups embedding look-
ups, the Nlookups embeddings are aggregated (�2 in Fig. 1) into a sin-
gle vector through an element-wise sum. The number of the output

� The authors are with the Department of Electrical Engineering & Computer Science,
DGIST, Daegu 42988, South Korea. E-mail: {sejink06, jungwoo, dracol, jhkung,
sungjin.lee}@dgist.ac.kr.

Manuscript received 2 November 2022; accepted 23 November 2022. Date of current ver-
sion 22 December 2022.
This work was supported in part by the MOTIE (Ministry of Trade, Industry
& Energy) under Grant 1415181081, in part by KSRC (Korea Semiconductor
Research Consortium) under Grant 20019402, in part by development of the
future semiconductor device, and in part the by the Samsung Research Fund-
ing Incubation Center of Samsung Electronics under Grant SRFCIT1902-03.
(Corresponding author: Sungjin Lee.)
Digital Object Identifier no. 10.1109/LCA.2022.3227560

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 2, JULY-DECEMBER 2022 157

1556-6056 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 07:44:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3446-8034
https://orcid.org/0000-0003-3446-8034
https://orcid.org/0000-0003-3446-8034
https://orcid.org/0000-0003-3446-8034
https://orcid.org/0000-0003-3446-8034
https://orcid.org/0000-0003-3953-7895
https://orcid.org/0000-0003-3953-7895
https://orcid.org/0000-0003-3953-7895
https://orcid.org/0000-0003-3953-7895
https://orcid.org/0000-0003-3953-7895
https://orcid.org/0000-0001-5009-0559
https://orcid.org/0000-0001-5009-0559
https://orcid.org/0000-0001-5009-0559
https://orcid.org/0000-0001-5009-0559
https://orcid.org/0000-0001-5009-0559
https://orcid.org/0000-0002-2027-8531
https://orcid.org/0000-0002-2027-8531
https://orcid.org/0000-0002-2027-8531
https://orcid.org/0000-0002-2027-8531
https://orcid.org/0000-0002-2027-8531
https://orcid.org/0000-0002-9753-2286
https://orcid.org/0000-0002-9753-2286
https://orcid.org/0000-0002-9753-2286
https://orcid.org/0000-0002-9753-2286
https://orcid.org/0000-0002-9753-2286
mailto:sejink06@dgist.ac.kr
mailto:jungwoo@dgist.ac.kr
mailto:dracol@dgist.ac.kr
mailto:jhkung@dgist.ac.kr
mailto:sungjin.lee@dgist.ac.kr

vectors of the embedding layer is thus equal to the number of
sparse features, Nspa.

To increase computational efficiency, the inference requests are
grouped into a mini-batch and processed together. Sparse feature i
for a mini-batch is represented as indices (Ii) and offsets (Oi), as
shown in Fig. 1 (right). Ii is an array of indices of the embeddings
to look up from Ti and Oi is an array of offsets that indicate the
starting index of each request within Ii. Thus, for request Rj with
request number j, embeddings at index Ii½k� for k in range
½Oi½j�; Oi½jþ 1�Þ are looked up. For example, in Fig. 1 (right), for R0,
from T0, the embeddings at indices 1 and 2 are looked up
(Nlookups ¼ 2). They are then aggregated into a single vector. While
not shown in Fig. 1, the above operations are done for all the
requests in the mini-batch. This produces Nspa �Nreq vectors, where
Nreq is the number of inference requests in a mini-batch.

Feature Interaction. For each request, the Nspa þ 1 vectors pro-
duced by the bottom MLP and the embedding layer are the input
for feature interaction. Feature interaction performs arithmetic
operations over the input vectors. Sum is equal to the aggregation
operation of the embedding layer as it performs element-wise sum
over the vectors, producing an output vector. It is the most popular
as it reduces the size of data and is simple to implement. We thus
use sum as the default operation.

3 DESIGN AND IMPLEMENTATION OF SEMS

3.1 Overall Architecture

Fig. 2 shows the overall design of SEMS that comprises multiple
SEMs. Each SEM is connected to the PCIe and consists of an FPGA
and an off-chip DRAM. The off-chip DRAM is used to store the
entire embedding layer. Various operations, which were executed
in CPUs or GPUs, are offloaded to the FPGA. The embedding
tables and the offloaded operations are encapsulated by a well-
defined Python library, SEMlib. As depicted in Fig. 2, SEMlib
exposes two classes, CELayer and CETable, which represent an
embedding layer and an embedding table, respectively. A CELayer
instance is created to build an embedding layer over SEMS, which
involves the creation of CETable instances. CETables are assigned
to SEM modules in a way that maximally exploits SEMS-level

parallelism (see Section 3.3). By invoking CELayer’s transferET-
able() method, an embedding table is loaded to the internal
DRAM of the designated SEM module. The offloaded operations
are implemented in SEMs’ FPGAs, and are executed by calling
CELayer’s kFunc() method. Regardless of how the embeddings
are stored in the DRAM and how the offloaded operations are
implemented, the device-level details are hidden behind SEMlib.

For fast prototyping of the offloaded operations, we use high-
level synthesis (HLS) that converts C/C++ functions to register
transfer level (RTL) code. SEMlib also works as a bridge between
the software and the hardware; when a class function call arrives,
it transfers the parameters to the hardware accelerator via OpenCL,
supported by commercial FPGAs. It lets the direct communication
between the host and SEM, bypassing the intermediate software
and I/O layers.

When offloading the operations, we consider two aspects: (i)
how much data transfer could be reduced and (ii) how easily the
offloaded operations could be implemented. While keeping these
in mind, we offload two operations, lookup and aggregation, for
the embedding layer and feature interaction.

For each sparse feature,Nlookups embeddings are aggregated into
a vector (see Fig. 1 (right)). Thus, by offloading the lookup opera-
tion, anNlookups � data reduction is achieved. SEMS further reduces
the amount of data to transfer by offloading a part of feature inter-
action. As the associative law holds for addition, feature interaction
could be split and performed in two levels, the SEM device and the
host. Instead of sending the output vectors (i.e., Nspa vectors for
Nspa sparse features) of the embedding layer to the host directly,
we reduce them into a single vector and transfer it to the host by
performing a part of feature interaction in the SEM side. This leads
to an Nspa� data reduction. As a result, there is a total of Nlookups �
Nspa� data reduction (e.g., if Nlookups ¼ 120 and Nspa ¼ 32, 3; 840�
data reduction is accomplished). This can increase the effective
bandwidth of PCIe by several thousand times. In the host side, the
rest of feature interaction is applied to the outputs from the SEM
devices and the bottom MLP.

The operations involved in the embedding layer and feature
interaction are simple array indexing for embedding lookups and
element-wise sum. They are simple to implement in FPGA, requir-
ing a small amount of hardware resources.

3.2 Execution of Recommender Systems Using SEMS

We explain the detailed architecture of the hardware kernel
(kFunc()) in Fig. 3. The kernel accepts two major input parame-
ters for a mini-batch of requests, an array of indices I and an array
of offsets O. The kernel processes one sparse feature at a time. For
each sparse feature i, we form a group Gi, consisting of Ii and Oi,
from the two arrays.

The two arrays transferred from the host are kept in the global
memory shared by the host and SEM. For a better performance, the
arrays in the global memory are fetched to the local memory (�1 in
Fig. 3). In the decode phase (�2 in Fig. 3), to lookup an embedding
to serve Rj, we decode Gi to obtain the request number j and the
index of the embedding, using two counters: request counter and
index counter. For Rj, embeddings whose indices are Ii½k� for k in
range ½Oi½j�; Oi½jþ 1�Þ are looked up. j starts from 0 and the request
counter increases j by 1 when all the embeddings for Rj have been

Fig. 1. The overall structure of the modern DL-based RSes.

Fig. 2. The overall architecture of SEMS.

Fig. 3. The execution of RSes using SEMS.

158 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 2, JULY-DECEMBER 2022

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 07:44:14 UTC from IEEE Xplore. Restrictions apply.

looked up (�1 in Fig. 3). k starts from 0 and the index counter
increases k by 1 at the end of each decode phase (�4 in Fig. 3). Using
Ii½k� (�3 in Fig. 3), the embedding at that index is retrieved from Ti

during the lookup phase (�3 in Fig. 3) and is stored locally.
Aggregation is operated in the sum phase (�4 in Fig. 3). For each

inference request, SEM produces an output vector. Thus, for a
mini-batch of Nreq requests, SEMS maintains Nreq vectors. The ele-
ments of these vectors are initialized to zero. Once an embedding
is retrieved, it is added in an element-wise manner to the vector for
Rj. j obtained during the decode phase is used to identify this vec-
tor (�2 in Fig. 3). If a request requires multiple lookups, embeddings
from subsequent lookups are added up to the same vector.

Once the three phases have been gone through for Gi, for all the
requests in a mini-batch, the above steps are repeated for the next
group, Giþ1. As the feature interaction operation is sum, the aggre-
gated result for each sparse feature is again aggregated into a vec-
tor. Thus, for Giþ1, the retrieved embeddings are added in an
element-wise manner to the same vector as did for Gi. In this way,
aggregation and feature interaction are performed at once without
any additional hardware logic.

3.3 Optimization

We optimize SEMS at three levels: (i) CU-level, (ii) SEM-level, and
(iii) SEMS-level, where CU stands for compute unit, which is the
unit of kernel execution.

CU-Level Optimization. Using HLS, we apply pipelining to the
kernel. There are three major components in a single pipeline of
the hardware kernel discussed in Section 3.2: decode, lookup, and
sum. Since we designed the components to have no dependency
between them, pipelining can be easily applied.

We apply two optimization techniques to further increase the
impact of pipelining. First, we exploit the local memory to keep the
length of each stage of the pipeline short. The local memory is only
accessible from the kernel, but has a much shorter access time than
the global memory. To exploit the fast access time of the local mem-
ory, we add a fetching phase (�1 of Fig. 3) which fetchesGi from the
global memory to the local memory. During the decode phase,Gi is
accessed from the local memory. For the sum phase, we manage the
output vectors locally and add a write-back phase (�5 of Fig. 3) that
writes them back to the global memory. As the memory accesses
during the fetching and the write-back phase are sequential, the
data are transferred in bursts, showing a very small latency.

We also reduce the length of each pipeline stage by parallelizing
the sum operations. In the sum phase, an element-wise sum is per-
formed on two vectors. We parallelized the sum operations at dif-
ferent index positions as there is no dependency between them.

SEM-Level Optimization. SEMS creates multiple CUs per SEM
and data parallelism is applied across them, equally distributing
the requests in the mini-batch. Since there is no dependency
between the requests, the CUs can run in parallel. Therefore, the
throughput scales with the number of CUs. Moreover, as the CUs
share the same memory space, unlike the typical data parallelism,
the model does not need to be copied.

SEMS-Level Optimization. If a single SEM does not provide
enough capacity to load all the embeddings, model parallelism
could be applied, which exploits multiple SEMs. We propose a par-
titioning scheme called table-wise partitioning. It partitions the
embedding layer by assigning each embedding table to SEM. As
the feature interaction operation is sum, there is no dependency
between the operations performed on each embedding table. Thus,
each SEM can process the embedding layer and feature interaction
on the assigned embedding tables, independent of another. Done
with the dedicated computations, each SEM sends the (parital) out-
put vector to the host. Then, these vectors are accumulated together
in the host to produce the final output.

When partitioning, we need to consider both size and load bal-
ancing. Size balancing is balancing the sum of the sizes of the
assigned tables between SEMs and load balancing is balancing the
amount of computations between SEMs. A trade-off may exist
between the two and in order to keep the inference time low, we
give a higher priority to load balancing. As the number of lookups
for each table is equal, the load of each SEM is determined by the
number of tables assigned to SEM. For load balancing, we thus par-
tition the embedding layer so that each SEM has the same number
of tables,

Nspa

NSEMs
, where NSEMs is the number of SEM devices in

SEMS. This not only balances the communication cost between
each SEM and the host but also reduces it. For size balancing, we
assign the embedding tables from largest to smallest one by one to
the SEM that has the smallest sum of the sizes of the assigned
tables.

4 EXPERIMENTS

4.1 Experimental Setup

We implement a proof-of-concept prototype of SEMS. The setup of
SEMS is explained in Section 1. The host system contains a 64GB
DDR4 memory, a 2TB SSD , and an Intel Xeon Gold 6248R CPU
running at 3.00GHz with two NUMA nodes, 24 cores per CPU,
and an RTX-3090 GPU with a 24GB GDDR6X memory.

We use DLRM [4] as the target recommendation system. The
execution time of DLRM inference is used as the default evaluation
metric which is calculated by adding up the elapsed time of each
component for 1,000 iterations. The mini-batch size is 128. To
understand how the number of embedding lookups per sparse fea-
ture affects the performance of SEMS, we use two different types
of DLRM models: Model A and B. They share the same bottom
MLP (13-512-256-128-128) and Top MLP (512-256-1) structure and
D ¼ 128. Model A uses Criteo’s dataset [6] for the dense features
and use synthetic dataset with 32 sparse features, where Nlookups ¼
120. Model B uses Criteo’s dataset for both the dense and sparse
features, having 26 sparse features, where Nlookups ¼ 1. The size of
Model A and B are 7.63GB and 16.1GB, respectively.

We compare SEMS with typical CPU-based and GPU-based
systems where the entire model is loaded in the CPU memory and
the GPU memory, respectively. Conversely, SEMS keeps the entire
embedding layer in SEMs’ DRAM and performs a part of feature
interaction in SEMs. The top and bottom MLP and another part of
feature interaction are run using the CPUs. We also evaluate the
impact of optimization techniques.

For fast evaluation, we use models with a relatively small-sized
embedding layer (7.63GB and 16.1GB). In reality, an embedding
layer is expected to reach 1TB in size [7]. Considering that com-
modity servers have up to 128GB or 256GB of DRAM due to the
limited number of DIMM slots, the Model-to-DRAM ratio is 8:1 or
4:1. To emulate this, we conduct another experiment using the
CPU-based system where we limit the system memory size to 75%,
50%, 25%, and 12.5% of the embedding layer size. The CPU-based
system cannot hold the entire embedding layer in the DRAM and
relies on the OS swapping to extend the system memory, whereas
in the GPU-based system, as swapping is not supported, the model
cannot be run without multiple GPUs, which is very expensive.
Thanks to the high scalability of PCIe, SEMS employs as many
SEMs as possible to accommodate the embedding layer, in a cost-
effective way.

4.2 Experimental Results

Figs. 4a and 4b present the experimental results of Model A and B,
respectively. Full is a system with enough memory to fully load
the entire embedding layer. n% represents the CPU-based system
that has an insufficient amount of DRAM, holding only n% of the
embedding layer. mCU is SEMS with m CU(s). The maximum

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 2, JULY-DECEMBER 2022 159

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 07:44:14 UTC from IEEE Xplore. Restrictions apply.

number of CUs that could be synthesized through HLS depends on
the model. 10 and 7 CUs are created at maximum for Model A and
B, respectively. 2SEM is SEMS with two SEMs where each SEM has
the maximum number of CUs and table-wise partitioning is
applied. In the experiments using SEMS, the CU-level optimization
techniques are applied.

We compare SEMS under the most well-performing setting with
the GPU and the CPU-based systems. In Fig. 4a 2SEM is about and
10.66� and 3.42� slower than Full (GPU) and Full (CPU),
respectively. In Fig. 4b, 7CU is about 1.60� and 1.36� slower than
Full (GPU) and Full (CPU), respectively. This is owing to the
longer latency of the interconnect (DIMM versus PCIe) and the
HLS-based accelerator designs (which are not highly optimized
than the RTL-based ones). As the embedding layer gets bigger than
the capacity of the DRAM and the costly swap in and outs occur,
SEMS outperforms the CPU-based systems, exhibiting up to 32.85�
and 1.56� better performance inModel A and B, respectively.

CU-Level Optimization. We evaluate the impact of pipelining
using Model A, focusing on how much individual optimization
techniques shorten the execution time. The results are shown in
Fig. 4c. Naı̈ve is the execution time when no optimization tech-
nique is applied. Local and Parallel are about exploiting the
local memory and parallelism, respectively. The techniques have
been applied accumulatively. Local reduces the execution time by
33.59� by exploiting the fast local memory and the burst data
transfer between the host and SEM. Parallel further reduces the
execution time by 3.84� compared to Local.

SEM-Level Optimization. We analyze the performance of SEMS,
varying the number of CUs. The performance improvement of
SEMS becomes marginal as the number of CUs increases. This is
because, due to the communication cost, there are some delays
between the executions in different CUs. These delays prevent the
executions from being overlapped fully. As the number of CUs
increases, the execution time of each CU becomes shorter, decreas-
ing the overlapped portion between the executions in different CUs.

SEMS-Level Optimization. We evaluate the scalability of SEMS
with the number of SEMs. In Fig. 4a, 2SEM shows 1.48� faster per-
formance compared to 10CU. In Fig. 4b, applying SEMS-level opti-
mization to 7CU worsens the performance as the execution time of
each CU is too short that executions in some CUs are not even over-
lapped and extra communication traffic occurs for the synchroniza-
tion of two SEMs.

5 RELATED WORK

There have been several attempts to efficiently deal with large
embedding layers. RecNMP [8] is a DIMM-based near-memory
processing solution for DL-based RSes. By offloading the embed-
ding layer to the DIMM and exploiting rank-level parallelism,
RecNMP greatly improves the performance of DL-based RSes.
However, since RecNMP is implemented in the buffer chip within
a DIMM, a significant change in the HW is inevitable and custom-
ized CPU instructions must be added. SEMS presents a viable
design option that could be deployed in conventional systems
more easily by using commercially available DRAM+FPGA cards.

RecSSD [9] is an SSD-based near-data processing system for the
inference of RSes. Similar to SEMS, it offloads the embedding layer
and someof feature interaction to the SSD controllers. It also attempts
to further reduce service latency by caching the embeddings in both
the host and the SSD side. Although it outperforms conventional
SSD-based systems and provides much higher capacity than SEMS,
the long latency ofNANDflash and the limited performance of ARM
CPUsmake RecSSD slower thanDRAM-based systems like SEMS.

Heterogeneous architectures have been widely adopted to
accelerate DL applications. [10] proposes a FPGA-GPU heteroge-
neous system for CNNs. It shows that direct hardware mapping
(DHM) of CNN on an embedded FPGA can beat GPU-based proc-
essing but claims that FPGA cannot fully substitute GPU as DHM
requires a lot of FPGA resources. [10] has a different scope from
SEMS because it focuses on CNN-based DL applications rather
than the embedding-based ones. However, [10] is in line with this
study in that it shows the possibility of exploiting heterogeneity in
accelerating DL applications.

6 CONCLUSION

We proposed SEMS, a scalable embeddingmemory system to accel-
erate DL applications with large embedding layers using FPGAs.
The use of PCIe bus made SEMS highly scalable and versatile. The
amount of data transferred was minimized by processing data in
SEMs, improving the effective bandwidth of PCIe. We also opti-
mized SEMS at various levels to maximize its benefits. The evalua-
tion results show that SEMSwas approximately 32:85� faster than a
traditional CPU-based system. We plan to extend SEMS to support
Intel’s Compute Express Link (CXL), which lets the direct commu-
nication andmemory sharing among CPU, SoC, GPU, and FPGAs.

REFERENCES

[1] J. Dean, D. Patterson, and C. Young, “A new golden age in computer archi-
tecture: Empowering the machine-learning revolution,” IEEE Micro,
vol. 38, no. 2, pp. 21–29, Mar./Apr. 2018.

[2] Xilinx, Inc., “Alveo U200 and U250 data center accelerator cards data
sheet,” 2021. [Online]. Available: https://tinyurl.com/2p9xsw5f

[3] BittWare, “250-M2D M.2 accelerator module,” 2022. [Online]. Available:
https://tinyurl.com/mwknws9x

[4] M. Naumov et al., “Deep learning recommendation model for personaliza-
tion and recommendation systems,” 2019, arXiv:1906.00091.

[5] J. Park et al., “Deep learning inference in facebook data centers: Characteri-
zation, performance optimizations and hardware implications,”
2018, arXiv:1811.09886.

[6] Kaggle, “Criteo display advertising challenge dataset,” 2014. [Online].
Available: https://www.kaggle.com/c/criteo-display-ad-challenge

[7] E. K. Ardestani et al., “Supporting massive DLRM inference through soft-
ware defined memory,” CoRR, 2021, arXiv:2110.11489.

[8] L. Ke et al., “RecNMP: Accelerating personalized recommendation with
near-memory processing,” in Proc. IEEE/ACM 47th Annu. Int. Symp. Com-
put. Architect., 2020, pp. 790–803.

[9] M. Wilkening et al., “RecSSD: Near data processing for solid state drive
based recommendation inference,” in Proc. 26th ACM Int. Conf. Architect.
Support Program. Lang. Operating Syst., 2021, pp. 717–729.

[10] W. Carballo-Hern�andez et al., “Why is FPGA-GPU heterogeneity the best
option for embedded deep neural networks?,” 2021, arXiv:2102.01343.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Fig. 4. The DLRM execution time. (a) A breakdown for Model A. (b) A breakdown for Model B. (c) The comparison between optimization techniques.

160 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 21, NO. 2, JULY-DECEMBER 2022

Authorized licensed use limited to: POSTECH Library. Downloaded on February 22,2025 at 07:44:14 UTC from IEEE Xplore. Restrictions apply.

https://tinyurl.com/2p9xsw5f
https://tinyurl.com/mwknws9x
https://www.kaggle.com/c/criteo-display-ad-challenge

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

